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Parallel Simulated Annealing Techniques 

Daniel R. Greening 

. University of California, Los Angeles, and 
IBM T.J. Watson Research Center 

November 27, 1989 

Abstract 

Simulated annealing is a stochastic algorithm for solving discrete optimization prob­
lems, such as the traveling salesman problem and circuit placement. 

To reduce execution time, researchers have parallelized simulated annealing. Serial­
like algorithms identically maintain the properties of sequential algorithms. Altered 
generation algorithms modify state generation to reduce communication, but retain 
accurate cost calculations. Asynchronous algorithms reduce communication further by 
calculating cost with outdated information. 

Experiments suggest that asynchronous simulated annealing can obtain greater 
speedups than other techniques. It exhibits the properties of cooperative phenomena: 
processors asynchronously exchange information to bring the system toward a global 
mm1mum. 

This paper provides a comprehensive, taxonomic survey of parallel simulated an­
nealing techniques, highlighting their performance and applicability. 
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1 Introduction 

Several interesting combinatorial optimization problems are NP-hard-that is, they require 
at least non-deterministic polynomial time to obtain optimal solutions. Mathematicians have 
exerted considerable effort trying to determine whether P ( deterministic polynomial time) 
= NP, with no success. Thus, present-day optimal solutions for NP-hard problems require 
exponential time, rendering them intractable. That explains why sub-optimal, polynomial­
time algorithms, like simulated annealing, have attracted interest. 

Simulated annealing seeks to minimize a cost function for a system of interacting state 
variables [1]. Often the cost function presents a difficult landscape, with many local min­
ima. Simulated annealing tries to escape local minima by randomly following cost-increasing 
paths. One cannot guarantee polynomial-time convergence to a global minimum for NP­
complete problems ( that would prove P = NP), however evidence shows that simulated 
annealing often produces good results. 

Simulated annealing is often applied to VLSI circuit placement. In VLSI design, re­
ducing circuit area decreases fabrication price, and shortening wires increases circuit speed. 
Rearranging circuit elements (called "cells") on a plane will change those values. Optimiz­
ing the arrangement is VLSI circuit placement: the cost function typically includes a linear 
combination of total circuit area and total wire-length. 

Variants of VLSI placement fall into three categories. In "gate-array placement," all cells 
have a uniform rectangular shape. In "row-based placement," cells have a constant height, 
but varying width. In "macro-cell placement," cells can vary in size and shape. 

A popular row-based placement and routing program, called TimberWolfSC, uses simu­
lated annealing [2]. In a benchmark held at the 1988 International Workshop on Placement 
and Routing, TimberWolfSC produced the smallest placement for the 3000-element Pri­
mary2 circuit-3% smaller than its nearest competitor. Moreover, it completed earlier than 
all other entrants. TimberWolfSC also routed Primary2; no other entrant completed that 
task. 

Even approximate solutions to NP-hard problems require substantial time: simulated an­
nealing is no exception. On a Sun 4/260, Primary2 requires approximately 3 hours to place. 
Larger circuits require more time; for 30,000-element circuits, placement runs commonly 
take 36 hours. 

Such onerous run times have driven researchers to implement simulated annealing on mul­
tiprocessors. Several techniques have been tried. Organized under the taxonomy described 
in this paper, their similarities should become clear. 

Parallel implementations, particularly the asynchronous simulated annealing programs, 
exhibit properties of cooperative phenomena: individual processors make decisions based on 
incomplete or delayed information, yet together they approach a common goal [3]. As a 
result, this paper can suggest research directions and implementation techniques for areas 
outside simulated annealing. 
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1.1 Problem Formulation 

Problems amenable to simulated annealing typically have these features: 

1. One can construct an initial solution, or "state," s0 E S, where S is the set of all 
feasible states, and evaluate its cost-function E 80 = f(s 0 ). 

2. One can construct an inexpensive mapping, through a neighborhood relation g, from 
a single feasible state s into a set of feasible states g[ { s}]. 

3. One can inexpensively compute the cost-difference ~Es,s' for any state s' E g[ { s}], so 
that Es, = ~Es,s' + Es. 

4. A finite number, i, of recursive applications of g to s0 , go••• og[{s 0 }] covers the entire 
state space, soi[ { s0 }] = S. 

1. function accept(AE, T) 
2. return((AE :S 0) V (e-6.E/T; > random())); 

3. read(P); 
4. s +- some randomly constructed initial state for P; 
5. E +- f(s); 
6. T +- oo; 
7. loop for i +- 0 to oo 
8. s +- a randomly selected element of g[{s}]; 
9. AE +- Aj(s, s) 
10. if accept( AE, T ) then 

11. s - s; 
12. E +- E + AE; 
13. end if; 
14. if done( T, other statistics ) then 
15. write( s ); 

16. stop; 
17. end if; 
18. T +- update( T, other statistics ); 
19. end loop; 

Figure 1: Algorithm SSA, Sequential Simulated Annealing 

Sequential implementations follow the general form in Figure 1, Algorithm SSA. It uses 
a pseudorandom number generator to create a random starting state (line 4), to generate a 
random state change for consideration (line 8), and to decide whether to accept the generated 
state (line 10). 
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The accept function (line 1) uses .6.E to decide whether to keep the new configuration. 
If .6.E is negative, the perturbed state s is better than s, and the program always accepts 
the new configuration (lines 11-12). If .6.E is positive, state s is worse than state s, and the 
program accepts the new configuration with probability e-(t:.E/T). 

Higher T values and lower .6.E values increase the likelihood that a cost-increasing con­
figuration will be accepted. However, if T > 0, any cost-increasing configuration has some 
probability of being accepted. 

The procedure for updating T is called the temperature schedule. The equilibrium cost is 
the mean value of E we would obtain from running the simulated annealing algorithm forever 
at some fixed temperature T. Most program first set Tat a high value, then reduce T while 
attempting to keep E close to the equilibrium cost. One common temperature schedule has 
T +--- ,T, where O <, < 1. 

Intuitively, simulated annealing first explores the entire state space and then reduces 
its scope. Each lowering of the temperature restrains state exploration further. While 
the temperature is high, the algorithm can easily jump out of local minima; at its lowest 
temperatures, the algorithm usually moves toward lower cost. 

1.2 Parallel Algorithms 

Since a new state contains modifications to the previous state, simulated annealing is of­
ten considered an inherently sequential process. However, researchers have eliminated some 
sequential dependencies, and have developed several parallel annealing techniques. To cate­
gorize these algorithms, we ask several questions: 

1. How is the state space divided among the processors? 

2. Does the state generator for the parallel algorithm produce the same neighborhood as 
the sequential algorithm? How are states generated? 

3. Can moves made by one processor cause cost-function calculation errors in another 
processor? Are there mechanisms to control these errors? 

4. What is the speedup? How does the final cost vary with the number of processors? 
How fast is the algorithm, when compared to an optimized sequential program? 

A parallel algorithm exhibits so-called "superlinear" speedup when the speed improve­
ment over a sequential algorithm exceeds the number of processors. Simulated annealing 
researchers frequently see this suspicious property. 

Three factors can explain most superlinear speedup observations. First, changes to state 
generation wrought by parallelism can improve annealing speed or quality [4]. If this hap­
pens, one can reconcile the sequential algorithm by mimicking the properties of the parallel 
version [5, 6). Second, a speed increase might come with a solution quality decrease [7]. That 
property holds for sequential annealing, as well [8]. Third, annealing experimenters often 
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begin with an optimal initial state, assuming that high-temperature randomization will an­
nihilate the advantage. But if the parallel implementation degrades state-space exploration, 
high-temperature may not totally randomize the state: the parallel program, then, more 
quickly yields a better solution [9]. 

Knowledge of such pitfalls can help avoid problems. Superlinear speedup in cooperating 
systems, such as parallel simulated annealing, should raise a red flag: altered state explo­
ration, degraded results, or inappropriate initial conditions may accompany it. 

Synchronous 

Serial-Like 

Functional Decomposition 
Simple Serializable Set 
Decision Tree 

Altered Generation 

Spatial Decomposition 
Shared State-Space 
Systolic 

Asynchronous 

Spatial Decomposition 
Shared State-Space 

Figure 2: Parallel Simulated Annealing Taxonomy 

The taxonomy presented here divides parallel annealing techniques into the three major 
classes shown in Figure 2: serial-like, altered generation, and asynchronous. We call an 
algorithm synchronous if adequate synchronization ensures that cost function calculations 
are accurate. Two major classes, serial-like and altered generation, are synchronous algo­
rithms. Serial-like convergence algorithms identically maintain the convergence properties 
of sequential annealing. Altered generation algorithms modify state generation, but retain 
accurate cost calculations. Asynchronous algorithms, the third major class, eliminate some 
synchronization and tolerate the resulting errors to get a better speedup. 

Each class makes some trade-off between cost-function accuracy, state generation, paral­
lelism or communication overhead. 

2 Serial-Like Algorithms 

Three synchronous parallel algorithms preserve the convergence properties of sequential sim­
ulated annealing: functional decomposition, simple serializable set, and decision tree decom­
position. We call these serial-like algorithms. 
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2.1 Functional Decomposition 

Functional decomposition algorithms exploit parallelism in the cost-function f. In the virtual 
design topology problem, for example, the cost function must find the shortest paths in 
a graph. One program computes that expensive cost function in parallel, but leaves the 
sequential annealing loop intact [10). Published reports provide no speedup information. 

Another program evaluates the cost function for VLSI circuit placement in parallel [11). 
Simultaneously, an additional processor selects the next state. Figure 3, Algorithm FD, 
shows the details. 

1. m' - select random state; 
2. loop for i - 0 to oo 
3. m - m'; 
4. parallel block begin 
5. m' - generate( m ); 
6. E0 - block-length-penalty( m ); 
7. E 1 ,0 - overlap for affected cell co before move; 
8. • • • Ei,j - overlap for affected cell Cj before move; 
9. E 2,0 - overlap for affected cell co after move; 
10. • • • E2,j - overlap for affected cell Cj after move; 
11. E3 ,0 - length change for affected wire w0 ; 

12. • • • E3,k - length change for affected wire wk; 
13. end parallel block; 
14. i6..E - Eo + (E1,o + ... + E1,j) - (E2,o + ... + E2,j) + (E3,o + ... + E3,k); 
15. if accept( f}.E, T ) then 
16. parallel block begin 
17. update overlap values; 
18. update blocks and cells; 
19. update wire wo; 
20. • • • update wire wk; 
21. end parallel block; 
22. end if; 
23. recompute T, evaluate stop criteria, etc. 
24. end loop; 

Figure 3: Algorithm FD, Functional Decomposition for VLSI Placement 

One can obtain only a limited speedup from Algorithm FD. Ideally, the parallel section 
from line 4 to line 13 dominates the computation, each process executes in uniform time, and 
communication requires zero time. One can then extract a maximum speedup of 1 + 2j + k, 
where j is the average cells affected per move, and k is the average wires affected per 
move. Researchers estimate a speedup limitation of 10, based on experience with the VLSI 
placement program TimberWolfSC [2). 
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Since cost-function calculations often contain only fine-grain parallelism, communication 
and synchronization overhead can dominate a functional decomposition algorithm. Load­
balancing poses another difficulty. Both factors degrade the maximum speedup, making 
functional decomposition inappropriate for many applications. 

2.2 Simple Serializable Set 

If a collection of moves affect independent state variables, distinct processors can indepen­
dently compute each !:::..E without communicating. We call this a "serializable set"-the 
moves can be concluded in any order, and the result will be the same. The simplest is a 
collection of rejected moves: the order is irrelevant, the outcome is always the starting state. 

The simple serializable set algorithm exploits that property [11]. At low annealing tem­
peratures, the acceptance rate (the ratio of accepted states to tried moves) is often very low. 
If processors compete to generate one accepted state, most will generate rejected moves. 
These can all be executed in parallel. 

1. shared variable s, semaphore sema; 

2. parallel loop for i ..- 1 to P; 
3. loop for j ..- 0 to oo 
4. wait( sema ); 
5. Sold..- s; 
6. signal( sema ); 
7. (s, b..E) .._ generate( Sold ); 

8. if accept( b..E, T ) then 
9. wait( sema ); 
10. if Sold = s then 
11. s - s; 
12. T ..- new T; 
13. end if; 
14. signal( sema ); 
15. end if; 
16. change T, evaluate stop criterion, etc. 
17. end loop; 
18. end parallel loop; 

Figure 4: Algorithm SSS. Simple Serializable Set Algorithm 

Figure 4, Algorithm SSS, shows such a technique [12]. P processors grab the current 
state in line 5. Each processor generates a new state at line 7. If the new state is accepted 
(line 8) and the old state has not been altered by another processor (line 10), the move is 
made. Otherwise the move is discarded. 
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If the acceptance rate at temperature T is a(T), then the maximum speedup of this algo­
rithm, ignoring communication and synchronization costs, is 1/a(T). At high temperatures, 
where the acceptance rate is close to 1, the algorithm provides little or no benefit. But since 
traditional annealing schedules spend a majority of time at low temperatures, Algorithm 
SSS can improve overall performance. 

Algorithm SSS has limitations. Some recent annealing schedules maintain a(T) at rela­
tively high values, throughout the temperature range, by adjusting the generation function. 
Lam's schedule, for instance, keeps a(T) close to 0.44 [8]. With that schedule, Algorithm SSS 
provides a maximum speedup of approximately 2.3, regardless of the number of processors. 

2.3 Decision Tree Decomposition 

A third serial-like algorithm, called decision tree decomposition, exploits parallelism in mak­
ing accept-reject decisions [13]. Consider the tree shown in Figure Sa. If we assign a processor 
to each vertex, cost evaluation for each suggested move can proceed simultaneously. Since a 
sequence of moves might be interdependent (i.e., not serializable), however, we generate the 
states in sequence. 

vertex 
1 tm te td 

2 tm te I ... 
3 tm te td 

4 D··· 
5 tm I t e I ... 

time-> 
.....__ 

a. Annealing Decision Tree b. Functional Dependence 

Figure 5: Decision Tree Decomposition 

Figure Sb shows vertex dependencies. A vertex generates a move in time tm, evaluates 
the cost in time te, and decides whether to accept in time td. Note that vertex 2 cannot 
begin generating a move until vertex 1 generates its move and sends it to vertex 2. 

Research has provided hypothetical execution times, but no experimental confirmation. 
A simple implementation results in predicted speedups of log2 P, where Pis the number of 
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processors. By skewing tree evaluation toward the left when a(T) ~ 0.5, and toward the 
right when a(T) < 0.5, researchers predict a maximum speedup of (P + log2 P)/2 [13]. 

In numeric simulations, however, the speedups fall flat. With 30 processors and tm = 16te, 
the estimated speedup was 4.7. Unfortunately, in VLSI placement problems tm ~ te, and in 
traveling salesman problems tm ~ te. Reconciling tm leads to a speedup of less than 2.5 on 
30 processors. As a result, this approach holds little promise for such applications. 

3 Altered Generation Algorithms 

Even if a parallel annealing algorithm computes cost-functions exactly, it may not mimic 
the statistical properties of a sequential implementation. Often, state generation must be 
modified to reduce inter-processor communication. These altered generation methods change 
the pattern of state space exploration, and thus change the expected solution quality and 
execution time. 

3.1 Spatial Decomposition 

In spatial decomposition techniques, we distribute state variables among the processors, and 
variable updates are transmitted between processors as new states are accepted. Spatial 
decomposition techniques are typically implemented on message-passing multiprocessors. 

In synchronous decomposition, either processors must carefully coordinate move genera­
tion, or processors must not generate moves that affect other processors' state variables. We 
call the resulting two techniques cooperating processors and independent processors. 

3.1.1 Cooperating Processors 

A cooperating processor algorithm disjointly partitions state variables over the processors. A 
processor that generates a new state notifies other affected processors. Then, those processors 
synchronously evaluate and update the state. If a proposed move could interfere with another 
in-progress move, the proposed move is either delayed or abandoned. 

One such program minimizes the number of routing channels (the slots where wires lie) 
for a VLSI circuit [9]. The cost is the total number of routing channels that contain at least 
one wire; two or more wires can share the same routing channel, if they don't overlap. 

The program first partitions a set of routing channels across the processors of an iPSC/2 
Hypercube; that processor assignment henceforth remains fixed. Processors proceed in a 
lockstep communication pattern. At each step, all processors are divided into master-slave 
pairs. The master processor randomly decides among four move classes: 

Intra-displace The master and slave each move a wire to another channel in the same 
processor. 

Inter-displace The master processor moves one of its wires to a channel in the slave 
processor. 
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Intra-exchange Each master and slave each swap two wires in the same processor. 

Inter-exchange The master swaps a wire from one of its channels with a wire in the slave. 

Experiments indicate superlinear speedups, from 2. 7 on 2 processors to 17. 7 on 16 proces­
sors. These apparently stem from a nearly-optimal initial state and more-constrained parallel 
moves, making the reported speedups untenable. However, the decomposition method itself 
is sound. 

3.1.2 Independent Processors 

In independent processor techniques, each processor generates state changes which affect only 
its own variables. Under this system, a fixed variable assignment would drastically limit 
state-space exploration, and produce an inferior result; it requires periodic state variable 
redistribution. 

After 
annealing 

step. 

Processor o Processor1 

Figure 6: Rubber Band TSP Algorithm 

Processor P 

One such technique optimizes traveling salesman problems [14]. A traveling salesman 
problem (TSP) consists of a collection of cities and their planar coordinates. A tour that 
visits each city and returns to the starting point forms a solution; the solution cost is its 
total length. 

We construct an initial, poor-quality solution by putting the cities into a random se­
quence: the tour visits each in order and returns to the first city. We stretch this string of 
cities out like a rubber band, and evenly divide the two parallel tracks among the processors, 
as shown in Figure 6. The state variables consist of the endpoints of each two-city segment. 

Each processor anneals the two paths in its section by swapping corresponding endpoints. 
After a fixed number of tries in each processor, the total path length is computed, and a 



new temperature and a shift count are chosen. Each processor then shifts the path attached 
to its top left node to the left, and the path attached to its bottom right node to the right, 
by the shift count. This operation redistributes the state variables, ensuring that the whole 
state space is explored. Annealing continues until it satisfies the stopping criterion. 

In one experiment, the 30 processor versus 2 processor speedup ranged from about 8 for 
a 243 city TSP, to 9.5 for a 1203 city TSP. Unfortunately, a single processor example was not 
discussed. The paper does not show final costs; final cost probably increases as the number 
of processors increases. Other spatial decomposition techniques exhibit similar behavior and 
speedups [15, 16]. 

3.2 Shared State-Space 

Shared state-space algorithms make simultaneous, independent moves on a shared-memory 
state-space: no cost-function errors can occur. 

One such algorithm optimizes VLSI gate-array placement [7]. Changes in the state 
generation function, resulting from the locking of both cells and wires, caused the algorithm 
to generate poor convergence. Maximum speedup was 7.1 for 16 simulated RP3 processors, 
solving a uniform 9 x 9 grid problem. Improving the parallel algorithm's convergence would 
reduce its speedup below 7.1. 

A similar algorithm for minimizing the equal partition cut-set (see section 4.2) obtained 
a dismal speedup close to 1 on 16 processors [17]. 

Another shared state-space algorithm constructs conflict-free course timetables [18]. Be­
fore evaluating a move, the algorithm must lock the instructors, courses and rooms for two 
time periods, then swap them. If the locks conflict with an in-progress move, the locks are 
abandoned and another move is generated. Speedup was compared against an optimized 
sequential algorithm. With 8 processors, a speedup of 3.2 was obtained in scheduling 100 
class periods, while 6.8 was obtained in scheduling 2252 class periods. 

3.3 Systolic 

The systolic algorithm relies on the property that simulated annealing brings a thermody­
namic system toward the Boltzmann distribution [19, 20]. 

Suppose we have P processors, and we maintain the same temperature for a chain of N 
generated states. We would like to divide these moves into P subchains of length L = P/N, 
and execute them on different processors. Figure 7 shows a corresponding data flow graph 
for this decomposition. 

At any PICK node on processor p, we must decide between state S(n-I,p) computed by pro­
cessor p at temperature Tn-I, and state S(n,p-I) computed by processor p - 1 at temperature 
Tn. We make the choice according to the Boltzmann distribution. The relative probability 
of picking S(n-l,p) is 

(1) 
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Processor 1 Processor 2 Processor P 
I 
I Perform 

T1 I 
) 

' '> ,, 
I 

T2 I 
J 

' 
I 

T3 I 
I 
' . . . ... . . . 

Figure 7: Systolic Algorithm 

and the relative probability of picking S(n,p-l) is 

(2) 

where S is the entire state space and s l is a minimum cost state. Z(T) is the partition 
function over the state space, namely 

Z(T) = L ef(s)/T 

sES 

The PICK node then selects S(n-l,p) and S(n,p-l) with probabilities 

Po 
p(s(n-1,p)) = + , 

Po P1 

(3) 

(4) 

If we don't know the minimum cost, we can't evaluate f(sl). A lower bound must suffice 
as an approximation. Choosing a lower bound far from the infimum will increase execution 
time or decrease solution quality [8). 

The partition function, Z, requires the evaluation of every state configuration. The 
number of state configurations is typically exponential in the number of state variables, 
making exact computation of Z unreasonable. 

As a result, the systolic method uses an approximate Z. In the temperature regime where 
the exponential function dominates, p0 and p1 are almost completely determined by their 
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numerators in Equations 1 and 2. The influence of Z(T) thus becomes small, and it can be 
approximated by the normal distribution. 

How does the algorithm perform? With 8 processors operating on a 15 x 15 uniform grid 
of cities, the systolic algorithm obtained a mean path-length of 230, at a speedup of about 
6.2, while the sequential algorithm obtained an average of about 228.5. Accounting for the 
less optimal parallel result, the effective speedup is something less than 6.2. 

4 Asynchronous Algorithms 

Without sufficient synchronization, different processors can simultaneously read and alter 
dependent state-variables, causing cost-function calculation errors. Such algorithms are 
asynchronous. Imprecise cost-function evaluation accelerates sequential simulated anneal­
ing under certain conditions [21, 22]; a similar effect accompanies asynchronous parallel 
simulated annealing. 

These algorithms use a method related to chaotic relaxation-processors operate on out­
dated information [23]. Since simulated annealing randomly selects hill-climbing moves, it 
can tolerate some error; under the right conditions, annealing algorithms can evaluate the 
cost using old state information, but still converge to a reasonable solution. This property 
holds for genetic algorithms, as well [24]. 

Error tolerance provides a great advantage in multiprocessing: when processors inde­
pendently operate on different parts of the problem, they need not synchronously update 
other processors. A processor can save several changes, then send a single block to the other 
processors. The processor sends less control information and compresses multiple changes 
to a state variable into one, reducing total communication traffic. In addition, if updates 
can occur out-of-order, synchronization operations are reduced. Asynchronous algorithms 
require a minimum synchronization: two processors acting independently must not cause 
the state to become inconsistent with the original problem. 

Figure 8 shows how errors arise in a spatially decomposed traveling salesman problem. 
In the figure, variables a0 and a 1 denote the endpoints of edge a. The simulated annealing 
algorithm swaps endpoints to generate a new state. The algorithm partitions the cities over 
two processors. A processor may only swap endpoints that point to its vertices, ensuring 
problem consistency. However, to reduce synchronization time, processors do not lock edges 
while they evaluate the cost-function. 

While processor 0 considers swapping endpoint a0 with b1 , processor 1 considers swapping 
endpoint a 1 with b0 • Processor 0 sees a path-length change for its move of LlE = 2 (1-v'2) ~ 
-0.818. Processor 1 also sees LlE :::::: -0.818, for its move. 

Processor 0 makes its move, by swapping a0 and b1 . Now, processor 1 makes its move, 
thinking its LlE :::::: -0.818 (a good move) when the effect is LlE :::::: +0.818 (a bad move). 
At low temperatures, the error will degrade the final result unless corrected by a later move. 
So, simulated annealing does not have an unlimited tolerance for errors. 

Cost-function errors usually degrade convergence quality, when all other factors are fixed: 

13 



(0, 1) 

co 
(0,0) 

processor 
0 

d1 

(1,0) 

processor 
1 

(0, 1) 

co 
(0,0) 

b1 

an 

I 

I bo 

I 
I 
I 
I 
I 
I 
I a1 I 

processor O 
moves 

(1, 1) 

do 

(0, 1) 

processor 1 
moves 

Figure 8: Cost-Function Errors in Spatial Decomposition 
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note the contrast with altered state generation. For example, experiments have shown that 
VLSI placement quality decreases as errors increase [4, 25]. 

Several authors have conjectured that annealing properties might be preserved when the 
errors are small. Experimental evidence bears this out [4, 7, 26, 27, 28]. However, we can 
easily construct a problem which converges well under sequential simulated annealing, but 
will likely converge to a bad local minimum in an asynchronous program. 

Consider a system with two state variables x and y, so some states= (x, y) ES. Let the 
cost-function be f(x + y), shown in Figure 9. Now put x and yon two separate processors. 
Each processor proposes a move: processor O generates x +- x-1, while processor 1 generates 
y +- y - 1. In both cases, f:lE < O, so each move will be accepted. 

The cost-function error causes the state to jump to a high local minimum. At low 
temperatures, the annealing algorithm probably will not escape this trap. 

4.1 Asynchronous Spatial Decomposition 

Asynchronous spatial decomposition methods, like the synchronous methods in section 3.1, 
partition state variables across different processors. However, in asynchronous algorithms 
each processor also maintains read-only copies of state variables from other partitions. 

When a processor evaluates a new state, it uses only local copies of state variables. In 
some programs, when a move is accepted the new state information is immediately sent to 
other processors [26]. In other programs, a processor completes a fixed number of tries, 
called a "stream," before transmitting the modifications [4, 25]. Longer streams increase 
the execution-to-communication ratio, gaining a speedup, but they also increase calculation 
errors, reducing the solution quality. 
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Figure 9: Errors Can Cause Annealing Failure 

4.1.1 Clustered Decomposition 

The clustered decomposition technique solves two concurrent optimization problems: the 
specified target problem and assigning the state variables to processors. 

In one example, the target problem is VLSI macro-cell placement, and the assignment 
problem is cell partitioning [29]. Overlap penalties in the VLSI cost-function generate the 
largest errors-when two cells owned by different processors are moved to the same empty 
location, neither processor will see an overlap, but the overlap error might be huge. This leads 
to a clustering problem: divide state variables (macro-cells) equally among the processors, 
while putting dependent variables ( adjacent or connected macro-cells) on the same processor. 

We compute the assignment cost-function, for VLSI macro-cell placement, as follows. 
Let C be the set of cells, let C = { C1 , ... , Gp} be the partition of C over P processors, let c 
be a cell's vector center and let lei be its scaler area. For each processor p, we can compute 
the center of gravity Xp of its partition GP 

(5) 

and its inertial moment 

rp = I: lie - Xpll2 • lei (6) 
cECp 

The assignment cost-function for partition C is 

p 

fc(C) =We. I:ri (7) 
i=l 
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where We is a weighting factor. 
Experiments used the same temperature for both partitioning and placement: indepen­

dent temperature schedules would probably improve the result. A 30 macro-cell problem, 
running on an 8 processor, shared-memory Sequent 8000, reached a speedup of 6.4 against 
the same algorithm running on a single processor. 

Clustering improved convergence. We express a result's excess cost as Efina1 -Ernin, where 
Efina1 is the result's cost, and Emin is the best solution known (presumably close to optimal). 
Clustering reduced the excess cost in a 101 cell, 265 wire problem by about 15%. 
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Figure 10: Spatial Decomposition, 16 Tries per Block 

4.1.2 Rectangular Decomposition 

A simpler approach, rectangular decomposition, tries to accomplish the same goals. It divides 
the grid of a VLSI placement problem into disjoint rectangles, then shifts the boundaries 
after each stream [4]. At low temperatures, interdependent state variables typically share a 
rectangle. 

Different variants were tried: placing restrictions on the minimum width of a rectangle 
and "fuzzing" the rectangle boundaries. All rectangular decomposition schemes produced 
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small errors and converged close to the minimum. In contrast, random landing point assign­
ment on identical problems produced greater errors and converged to a much higher final 
cost [25]. 

One rectangular decomposition experiment fixed the number of generated states in a 
block of P N tries, where N is the stream length and P is the number of processors. Figure 
10 displays the resulting errors. The error value is c: = l~E - ~Epl, where ~Eis the actual 
cost change after completion of a stream, and ~Ep is the sum of the apparent cost changes 
observed by the processors. Increasing P also increases c:, as one might expect. 

4.2 Asynchronous Shared State-Space 

Asynchronous shared state-space algorithms keep all state variables in shared memory. Pro­
cessors competitively lock state variables, make moves, and unlock. Unlike synchronous 
algorithms, processors need not lock all affected state variables; they need only lock those 
variables required for problem consistency. 

One experiment compared synchronous and asynchronous algorithms for VLSI gate-array 
placement [7]. Under a simulated RP3 environment, three methods were tried. Method A, a 
synchronous shared state-space algorithm, is described in section 3.2. Each processor locked 
two circuits and any attached wires before attempting a swap. 

In method Bl, an asynchronous algorithm, processors lock only the two cells in the 
proposed move, and calculate the new wire length with possibly-changing information. Each 
processor maintains a local copy of the histogram, which holds a collection of intermediate 
cost function variables [1]. A move updates only the local histogram; at the completion of a 
stream, each processor corrects its histogram with global state information. 

Method B2 operates like Bl, except that it never corrects the local histograms. Thus, 
histogram information becomes progressively outdated as the temperature falls. 

Method Bl converged well with a maximum of 8 processors. Method B2 converged 
imperfectly, but surprisingly enough it converged better than a random spatial decomposition 
technique [25]. 

Using extrapolated simulation measurements for a 900 cell placement problem running 
on 90 processors, researchers estimated a speedup of about 45 for Method A, and 72 for 
Method Bl and B2 [30]. 

Another experiment compared synchronous and asynchronous shared state-space algo­
rithms for the equal partition cut-set problem [17]. Given a graph with an even number of 
vertices, such algorithms partition the vertices into two equal sets, and minimize the number 
of edges which cross the partition boundary. The synchronous algorithm locked both vertices 
and edges, while the asynchronous algorithm locked only vertices. 

On a 250 vertex graph, the synchronous algorithm ran more slowly than a sequential 
implementation, except at 16 processors where the speedup was close to 1. The asynchronous 
algorithm ran faster than the sequential algorithm, yielding 16-processor speedups from 5 
on a graph with mean vertex degree 10, to 11 on a graph with mean vertex degree 80. 
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These two experiments indicate that asynchronous execution may be very beneficial in 
simulated annealing. 

5 Hybrid Algorithms 

Hybrid algorithms recognize that different schemes may be more appropriate at different 
temperatures. We provide only a cursory review, since previous sections provide algorithmic 
details. 

5.1 Modified Systolic and Simple Serializable Set 

One hybrid combines a modified systolic algorithm and a simple serializable set algorithm 
(12]. In the modified systolic algorithm, independent processors copy the current state, then 
complete a stream of moves at the same temperature. The PICK operation chooses among the 
results, as per Equations 1 and 2. Equal temperatures for PICK simplify the computations. 

At high temperatures, where most moves are accepted, Algorithm SSS provides little 
benefit-here only the systolic algorithm is used. As the lower temperatures reduce the 
acceptance rate, the program combines Algorithm SSS with systolic. Finally, at extremely 
low acceptance rates, the program uses Algorithm SSS exclusively. 

Researchers claim this hybrid is slightly faster than the systolic algorithm alone (19]. 

5.2 Random Spatial Decomposition and Functional Decomposi-
tion 

Another approach combines asynchronous spatial decomposition with functional decompo­
sition (31]. This program randomly distributes the state variables across processors in an 
iPSC hypercube, to perform VLSI macro-cell placement. 

With a 20 macro-cell problem, on a 16 processor iPSC, the algorithm obtained speedups of 
between 4 and 7.5. Considering the small problem size and the message-passing architecture, 
the speedup appears very good. 

5.3 Heuristic Spanning and Spatial Decomposition 

One implementation uses heuristic spanning, a non-simulated annealing technique, and asyn­
chronous rectangular decomposition to perform VLSI placement (28]. 

The heuristic spanning algorithm chooses several random starting states, and iteratively 
improves each. For the high-cost regime, heuristic spanning shows better convergence be­
havior than simulated annealing. 

In the low cost regime, rectangular decomposition refines the state space to a lower final 
cost than heuristic spanning could achieve. The rectangular decomposition method showed 
a speedup of 4.1 on 5 processors, and an extrapolated speedup of 7.1 on 10 processors. 
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Using the hybrid technique, researchers estimate speedups of 10-13 on 10 processors, when 
compared to a standard simulated annealing algorithm. 

5.4 Functional Decomposition and Simple Serializable Set 

In another hybrid algorithm, functional decomposition operates at high temperatures, and 
simple serializable set operates at low temperatures [11]. The poor behavior of Algorithm 
SSS at high temperatures justifies a different algorithm. 

In this early work, researchers sought to avoid convergence problems by using only serial­
like algorithms-little was known of altered-generation or asynchronous algorithms. On a 
100 cell gate-array placement problem, they achieved a maximum speedup of 2.25 on a 4 
processor VAX 11/784. 

6 Conclusion 

We can neatly categorize parallel simulated annealing techniques into serial-like, altered gen­
eration, and asynchronous algorithmic classes. Experimental comparisons of these different 
techniques have appeared only recently, and have been limited in scope [4, 7, 11, 28]. 

Based on this survey, it appears that asynchronous and altered generation algorithms 
have provided the best overall speedup, while one serial-like technique, simple serializable 
set, has been incorporated advantageously at low temperatures. Several experiments indicate 
promising speedups in asynchronous algorithms. 

Fruitful areas of parallel simulated annealing research include the following: empirical 
comparisons of the three algorithmic classes, using identical problems; characterization of an­
nealing state spaces amenable to altered generation and asynchronous parallel annealing; the 
development of tuned temperature schedules which compensate for errors in asynchronous 
algorithms; and adapting work in related areas, such as computational ecologies, to parallel 
annealing. My colleagues and I are currently exploring these areas. 
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