
Sponsored by MCNC
In Cooperation

with acm®SIGDA

~
MCNC

Research Triangle Park
North Carolina, USA

---------. ····-· -·•·-··

PROCEEDINGS
(Volume I - Session 1 through Session 6)

International Workshop on Layout Synthesis

Research Triangle Park, North Carolina, USA

May 8-11, 1990

Sponsored by MCNC in Cooperation with

acm® SIGDA

Copyright 1990 MCNC

International Workshop on Layout Synthesis

Research Triangle Park, North Carolina, USA
May 8-11, 1990

Sponsored by MCNC
In Cooperation with

acm®s1GDA

Program

Tuesday Evening, May 8

4 :30-8 :30p.m.

6 :30-9 :30p.m .

.

Registration (Holiday Inn)

Reception and cocktails (Holiday Inn)

Wednesday, May 9

8:30-9:15a.m.

9:15-9:30a.m.

Continental Breakfast (MCNC)

Introduction
Franc Brglez, Workshop Chairperson, MCNC

Matt Kuhn, President, MCNC

Carl Sechen, Technical Program Chairperson
Yale University

9 : 3 0-1 o: 3 o a. m. Session 1 : Macro Cell Layout Systems
Session Chair: Carl Sechen, Yale University

1 . 1 Ongoing Research and Development of BEAR Layout
System, M. Pedram, UC-Berkeley, W. W-M Dai, UC-Santa Cruz,
M. Marek-Sadowska, UC-Berkeley, Y. Ogawa, Hitachi, Ltd.

1 . 2 New Algorithms for the Placement and Routing of Macro
Cells, W. Swartz, C. Sechen, Yale University

1 o :30-11 :00a.m. Break

11 :00-12 :00p.m. Session 2: Mixed Macro/Standard Cell Layout
Session Chair: Al Dunlop, AT&T Bell Laboratories
Session Co-Chair: Michael Lorenzetti, MCNC

2 . 1 Simulated Annealing Placement for Mixed Macro Cell and
Standard Cell Layouts, M. Upton, K. Samii, S. Sugiyama, Seattle
Silicon Corp.

2. 2 MONTAGE: An Automatic Layout System for Mixed Standard
Cells and Macro Blocks-Extended Abstract, J. Apte, G. Kedem,
Duke University

12 :00-1 :00p.m. Lunch (MCNC)

1 :00-2:30p.m. Session 3: Detailed Routing
Session Chair: Malgorzata Marek-Sadowska, UC-Berkeley
Session Co-Chair: James Cohoon, University of Virginia

3. 1 New Layout Synthesis Benchmarks, K. Kozminski, MCNC

3. 2 A Detailed Router for Field Programmable Gate Arrays,
S. Brown, J. Rose, Z. Vranesic, University of Toronto

3. 3 MARS: A General Routing Framework, M. lgusa,
A. Sangiovanni-Vincentelli, UC-Berkeley

2 :30-3 :00p.m. Break

3 :00-4 :O0p.m. Session 4: Channel Routing
Session Chair: Malgorzata Marek-Sadowska, UC-Berkeley
Session Co-Chair: James Cohoon, University of Virginia

4. 1 Compacted Channel Routing on Deutsch's New
Benchmarks, H. Chen, J-F Lee, IBM Corp.

4. 2 The Effect of Channel Router Algorithms on Chip Yield,
M. Lorenzetti, MCNC

6:00p.m. Dinner (Holiday Inn)

7:30p.m. Session 5: Benchmark Poster Introductions (Holiday Inn)
Session Chair: Krzysztof Kozminski, MCNC

Thursday, May 10

8:30-9:00a.m. Continental Breakfast (MCNC)

9 :00-1 0 :30a.m. Session 6: Floorplannlng
Session Chair: Ralph Otten, Delft University of Technology
Session Co-Chair: Krzysztof Kozmlnskl, MCNC

6. 1 GRCA: A Global Approach for Floorplanning Synthesis,
A. Herrigel, Swiss Federal Institute of Technology

6. 2 Floorplannlng with In-Place Quadripartltlonlng, J. Paolokat,
G. Zimmerman, University of Kaiserslautern

6. 3 An Optimal Algorithm for Floorplan Area Optimization,
T. Wang, D. Wong, University of Texas-Austin

10:30-11:00a.m. Break

11:00-12:30p.m. Session 7: Special Topics
Session Chair: Jonathan Rose, University of Toronto

7. 1 Clock Tree Design for Period Minimization In Standard Cell
Layout, D. Joy, M. Ciesielski, University of Massachusetts

7. 2 Permissible Error In Parallel Simulated Annealing,
M. Durand, Columbia University, S. White, IBM Corp.

7. 3 Equlllbrlum Conditions of Asynchronous Parallel Simulated
Annealing, D. Greening, IBM Corp./UCLA

12 :30-1 :30p.m. Lunch (MCNC)

1 :30-3:00p.m. Session 8: Symbolic Layout and Compaction
Session Chair: Jeff Burns, IBM, Corp.
Session Co-Chair: David Boyer, Bellcore

8. 1 DASL: Constraint Graph Compaction with Symbolic Tubs,
D. Boyer, Beilcore

8. 2 Lazy Constraint Generation for 2D Compaction, G. Bois,
E. Cerny, Universite de Montreal

8.3 SYMCELL: A Symbolic Standard Cell Design System,
K. Ramachandran, R. Cordell, D. Daly, D. Deutsch, A Kwan, Bellcore

3 :00-3 :30p.m. Break

3:30-5:00p.m. Session 9: Standard Cell Placement
Session Chair: Dwight HIil, AT&T Bell Laboratories
Session Co-Chair: Krzysztof Kozminskl, MCNC

9. 1 A Method of Dataflow Oriented Cell Initial Placement,
T. Hattori, C. Miura, S. Miyamoto, Hitachi, Ltd.

9. 2 A New Standard Cell Placement Approach Using Tabu
Search Techniques, M. Bartholomeus, Siemens AG

9. 3 A New Area-Based Figure of Merit for Layout Synthesis
Systems, A Rajanala, A. Tyagi, UNG-Chapel Hill

6:00p.m. Dinner (Holiday Inn)

7:30p.m. Panel Session by the pool (Holiday Inn)

Friday, May 11

8 :30-9 :00a.m. Continental Breakfast (MCNC)

9:00-10:30a.m. Session 10: Global Routing
Session Chair: Ulrich Lauther, Siemens AG/UC-Berkeley

1 o. 1 Mickey: A Macro Cell Global Router, D. Chen, C. Sechen,
Yale University

1 o. 2 Standard Cell Global Routing Optimization, S. Hustin,
Cadence Design Systems Inc.

1 0. 3 A Global Router for Sea-of-Gates Circuits, K-W Lee,
C. Sechen, Yale University

1 0 :30-11 :00a.m. Break

11:00-12:00p.m. Session 11: Branch and Bound Placements
Session Chair: Satoshi Goto, NEC Corp.
Session Co-Chair: Gerhard Zimmerman, Univ. of Kaiserslautern

11 . 1 Branch-and-Bound Placement for Building Block Layout,
H. Onodera, Y. Taniguchi, K. Tamaru, Kyoto University

11. 2 Optimal Linear Ordering with a Flexible Cost Function,
H. Cai, P. Six, H. De Man, IMEC Vz.N

12 :00-1 :00p.m.

1 :00p.m.

Lunch (MCNC)

A tour of MCNC, including the NC Supercomputing Center,
will be conducted. Shuttle buses depart for airport.

Parallel Simulated Annealing Techniques

Daniel R. Greening

. University of California, Los Angeles, and
IBM T.J. Watson Research Center

November 27, 1989

Abstract

Simulated annealing is a stochastic algorithm for solving discrete optimization prob­
lems, such as the traveling salesman problem and circuit placement.

To reduce execution time, researchers have parallelized simulated annealing. Serial­
like algorithms identically maintain the properties of sequential algorithms. Altered
generation algorithms modify state generation to reduce communication, but retain
accurate cost calculations. Asynchronous algorithms reduce communication further by
calculating cost with outdated information.

Experiments suggest that asynchronous simulated annealing can obtain greater
speedups than other techniques. It exhibits the properties of cooperative phenomena:
processors asynchronously exchange information to bring the system toward a global
mm1mum.

This paper provides a comprehensive, taxonomic survey of parallel simulated an­
nealing techniques, highlighting their performance and applicability.

1

1 Introduction

Several interesting combinatorial optimization problems are NP-hard-that is, they require
at least non-deterministic polynomial time to obtain optimal solutions. Mathematicians have
exerted considerable effort trying to determine whether P (deterministic polynomial time)
= NP, with no success. Thus, present-day optimal solutions for NP-hard problems require
exponential time, rendering them intractable. That explains why sub-optimal, polynomial­
time algorithms, like simulated annealing, have attracted interest.

Simulated annealing seeks to minimize a cost function for a system of interacting state
variables [1]. Often the cost function presents a difficult landscape, with many local min­
ima. Simulated annealing tries to escape local minima by randomly following cost-increasing
paths. One cannot guarantee polynomial-time convergence to a global minimum for NP­
complete problems (that would prove P = NP), however evidence shows that simulated
annealing often produces good results.

Simulated annealing is often applied to VLSI circuit placement. In VLSI design, re­
ducing circuit area decreases fabrication price, and shortening wires increases circuit speed.
Rearranging circuit elements (called "cells") on a plane will change those values. Optimiz­
ing the arrangement is VLSI circuit placement: the cost function typically includes a linear
combination of total circuit area and total wire-length.

Variants of VLSI placement fall into three categories. In "gate-array placement," all cells
have a uniform rectangular shape. In "row-based placement," cells have a constant height,
but varying width. In "macro-cell placement," cells can vary in size and shape.

A popular row-based placement and routing program, called TimberWolfSC, uses simu­
lated annealing [2]. In a benchmark held at the 1988 International Workshop on Placement
and Routing, TimberWolfSC produced the smallest placement for the 3000-element Pri­
mary2 circuit-3% smaller than its nearest competitor. Moreover, it completed earlier than
all other entrants. TimberWolfSC also routed Primary2; no other entrant completed that
task.

Even approximate solutions to NP-hard problems require substantial time: simulated an­
nealing is no exception. On a Sun 4/260, Primary2 requires approximately 3 hours to place.
Larger circuits require more time; for 30,000-element circuits, placement runs commonly
take 36 hours.

Such onerous run times have driven researchers to implement simulated annealing on mul­
tiprocessors. Several techniques have been tried. Organized under the taxonomy described
in this paper, their similarities should become clear.

Parallel implementations, particularly the asynchronous simulated annealing programs,
exhibit properties of cooperative phenomena: individual processors make decisions based on
incomplete or delayed information, yet together they approach a common goal [3]. As a
result, this paper can suggest research directions and implementation techniques for areas
outside simulated annealing.

2

1.1 Problem Formulation

Problems amenable to simulated annealing typically have these features:

1. One can construct an initial solution, or "state," s0 E S, where S is the set of all
feasible states, and evaluate its cost-function E 80 = f(s 0).

2. One can construct an inexpensive mapping, through a neighborhood relation g, from
a single feasible state s into a set of feasible states g[{ s}].

3. One can inexpensively compute the cost-difference ~Es,s' for any state s' E g[{ s}], so
that Es, = ~Es,s' + Es.

4. A finite number, i, of recursive applications of g to s0 , go••• og[{s 0 }] covers the entire
state space, soi[{ s0 }] = S.

1. function accept(AE, T)
2. return((AE :S 0) V (e-6.E/T; > random()));

3. read(P);
4. s +- some randomly constructed initial state for P;
5. E +- f(s);
6. T +- oo;
7. loop for i +- 0 to oo
8. s +- a randomly selected element of g[{s}];
9. AE +- Aj(s, s)
10. if accept(AE, T) then

11. s - s;
12. E +- E + AE;
13. end if;
14. if done(T, other statistics) then
15. write(s);

16. stop;
17. end if;
18. T +- update(T, other statistics);
19. end loop;

Figure 1: Algorithm SSA, Sequential Simulated Annealing

Sequential implementations follow the general form in Figure 1, Algorithm SSA. It uses
a pseudorandom number generator to create a random starting state (line 4), to generate a
random state change for consideration (line 8), and to decide whether to accept the generated
state (line 10).

3

The accept function (line 1) uses .6.E to decide whether to keep the new configuration.
If .6.E is negative, the perturbed state s is better than s, and the program always accepts
the new configuration (lines 11-12). If .6.E is positive, state s is worse than state s, and the
program accepts the new configuration with probability e-(t:.E/T).

Higher T values and lower .6.E values increase the likelihood that a cost-increasing con­
figuration will be accepted. However, if T > 0, any cost-increasing configuration has some
probability of being accepted.

The procedure for updating T is called the temperature schedule. The equilibrium cost is
the mean value of E we would obtain from running the simulated annealing algorithm forever
at some fixed temperature T. Most program first set Tat a high value, then reduce T while
attempting to keep E close to the equilibrium cost. One common temperature schedule has
T +--- ,T, where O <, < 1.

Intuitively, simulated annealing first explores the entire state space and then reduces
its scope. Each lowering of the temperature restrains state exploration further. While
the temperature is high, the algorithm can easily jump out of local minima; at its lowest
temperatures, the algorithm usually moves toward lower cost.

1.2 Parallel Algorithms

Since a new state contains modifications to the previous state, simulated annealing is of­
ten considered an inherently sequential process. However, researchers have eliminated some
sequential dependencies, and have developed several parallel annealing techniques. To cate­
gorize these algorithms, we ask several questions:

1. How is the state space divided among the processors?

2. Does the state generator for the parallel algorithm produce the same neighborhood as
the sequential algorithm? How are states generated?

3. Can moves made by one processor cause cost-function calculation errors in another
processor? Are there mechanisms to control these errors?

4. What is the speedup? How does the final cost vary with the number of processors?
How fast is the algorithm, when compared to an optimized sequential program?

A parallel algorithm exhibits so-called "superlinear" speedup when the speed improve­
ment over a sequential algorithm exceeds the number of processors. Simulated annealing
researchers frequently see this suspicious property.

Three factors can explain most superlinear speedup observations. First, changes to state
generation wrought by parallelism can improve annealing speed or quality [4]. If this hap­
pens, one can reconcile the sequential algorithm by mimicking the properties of the parallel
version [5, 6). Second, a speed increase might come with a solution quality decrease [7]. That
property holds for sequential annealing, as well [8]. Third, annealing experimenters often

4

begin with an optimal initial state, assuming that high-temperature randomization will an­
nihilate the advantage. But if the parallel implementation degrades state-space exploration,
high-temperature may not totally randomize the state: the parallel program, then, more
quickly yields a better solution [9].

Knowledge of such pitfalls can help avoid problems. Superlinear speedup in cooperating
systems, such as parallel simulated annealing, should raise a red flag: altered state explo­
ration, degraded results, or inappropriate initial conditions may accompany it.

Synchronous

Serial-Like

Functional Decomposition
Simple Serializable Set
Decision Tree

Altered Generation

Spatial Decomposition
Shared State-Space
Systolic

Asynchronous

Spatial Decomposition
Shared State-Space

Figure 2: Parallel Simulated Annealing Taxonomy

The taxonomy presented here divides parallel annealing techniques into the three major
classes shown in Figure 2: serial-like, altered generation, and asynchronous. We call an
algorithm synchronous if adequate synchronization ensures that cost function calculations
are accurate. Two major classes, serial-like and altered generation, are synchronous algo­
rithms. Serial-like convergence algorithms identically maintain the convergence properties
of sequential annealing. Altered generation algorithms modify state generation, but retain
accurate cost calculations. Asynchronous algorithms, the third major class, eliminate some
synchronization and tolerate the resulting errors to get a better speedup.

Each class makes some trade-off between cost-function accuracy, state generation, paral­
lelism or communication overhead.

2 Serial-Like Algorithms

Three synchronous parallel algorithms preserve the convergence properties of sequential sim­
ulated annealing: functional decomposition, simple serializable set, and decision tree decom­
position. We call these serial-like algorithms.

5

2.1 Functional Decomposition

Functional decomposition algorithms exploit parallelism in the cost-function f. In the virtual
design topology problem, for example, the cost function must find the shortest paths in
a graph. One program computes that expensive cost function in parallel, but leaves the
sequential annealing loop intact [10). Published reports provide no speedup information.

Another program evaluates the cost function for VLSI circuit placement in parallel [11).
Simultaneously, an additional processor selects the next state. Figure 3, Algorithm FD,
shows the details.

1. m' - select random state;
2. loop for i - 0 to oo
3. m - m';
4. parallel block begin
5. m' - generate(m);
6. E0 - block-length-penalty(m);
7. E 1 ,0 - overlap for affected cell co before move;
8. • • • Ei,j - overlap for affected cell Cj before move;
9. E 2,0 - overlap for affected cell co after move;
10. • • • E2,j - overlap for affected cell Cj after move;
11. E3 ,0 - length change for affected wire w0 ;

12. • • • E3,k - length change for affected wire wk;
13. end parallel block;
14. i6..E - Eo + (E1,o + ... + E1,j) - (E2,o + ... + E2,j) + (E3,o + ... + E3,k);
15. if accept(f}.E, T) then
16. parallel block begin
17. update overlap values;
18. update blocks and cells;
19. update wire wo;
20. • • • update wire wk;
21. end parallel block;
22. end if;
23. recompute T, evaluate stop criteria, etc.
24. end loop;

Figure 3: Algorithm FD, Functional Decomposition for VLSI Placement

One can obtain only a limited speedup from Algorithm FD. Ideally, the parallel section
from line 4 to line 13 dominates the computation, each process executes in uniform time, and
communication requires zero time. One can then extract a maximum speedup of 1 + 2j + k,
where j is the average cells affected per move, and k is the average wires affected per
move. Researchers estimate a speedup limitation of 10, based on experience with the VLSI
placement program TimberWolfSC [2).

6

Since cost-function calculations often contain only fine-grain parallelism, communication
and synchronization overhead can dominate a functional decomposition algorithm. Load­
balancing poses another difficulty. Both factors degrade the maximum speedup, making
functional decomposition inappropriate for many applications.

2.2 Simple Serializable Set

If a collection of moves affect independent state variables, distinct processors can indepen­
dently compute each !:::..E without communicating. We call this a "serializable set"-the
moves can be concluded in any order, and the result will be the same. The simplest is a
collection of rejected moves: the order is irrelevant, the outcome is always the starting state.

The simple serializable set algorithm exploits that property [11]. At low annealing tem­
peratures, the acceptance rate (the ratio of accepted states to tried moves) is often very low.
If processors compete to generate one accepted state, most will generate rejected moves.
These can all be executed in parallel.

1. shared variable s, semaphore sema;

2. parallel loop for i ..- 1 to P;
3. loop for j ..- 0 to oo
4. wait(sema);
5. Sold..- s;
6. signal(sema);
7. (s, b..E) .._ generate(Sold);

8. if accept(b..E, T) then
9. wait(sema);
10. if Sold = s then
11. s - s;
12. T ..- new T;
13. end if;
14. signal(sema);
15. end if;
16. change T, evaluate stop criterion, etc.
17. end loop;
18. end parallel loop;

Figure 4: Algorithm SSS. Simple Serializable Set Algorithm

Figure 4, Algorithm SSS, shows such a technique [12]. P processors grab the current
state in line 5. Each processor generates a new state at line 7. If the new state is accepted
(line 8) and the old state has not been altered by another processor (line 10), the move is
made. Otherwise the move is discarded.

7

If the acceptance rate at temperature T is a(T), then the maximum speedup of this algo­
rithm, ignoring communication and synchronization costs, is 1/a(T). At high temperatures,
where the acceptance rate is close to 1, the algorithm provides little or no benefit. But since
traditional annealing schedules spend a majority of time at low temperatures, Algorithm
SSS can improve overall performance.

Algorithm SSS has limitations. Some recent annealing schedules maintain a(T) at rela­
tively high values, throughout the temperature range, by adjusting the generation function.
Lam's schedule, for instance, keeps a(T) close to 0.44 [8]. With that schedule, Algorithm SSS
provides a maximum speedup of approximately 2.3, regardless of the number of processors.

2.3 Decision Tree Decomposition

A third serial-like algorithm, called decision tree decomposition, exploits parallelism in mak­
ing accept-reject decisions [13]. Consider the tree shown in Figure Sa. If we assign a processor
to each vertex, cost evaluation for each suggested move can proceed simultaneously. Since a
sequence of moves might be interdependent (i.e., not serializable), however, we generate the
states in sequence.

vertex
1 tm te td

2 tm te I ...
3 tm te td

4 D···
5 tm I t e I ...

time->
.....__

a. Annealing Decision Tree b. Functional Dependence

Figure 5: Decision Tree Decomposition

Figure Sb shows vertex dependencies. A vertex generates a move in time tm, evaluates
the cost in time te, and decides whether to accept in time td. Note that vertex 2 cannot
begin generating a move until vertex 1 generates its move and sends it to vertex 2.

Research has provided hypothetical execution times, but no experimental confirmation.
A simple implementation results in predicted speedups of log2 P, where Pis the number of

8

processors. By skewing tree evaluation toward the left when a(T) ~ 0.5, and toward the
right when a(T) < 0.5, researchers predict a maximum speedup of (P + log2 P)/2 [13].

In numeric simulations, however, the speedups fall flat. With 30 processors and tm = 16te,
the estimated speedup was 4.7. Unfortunately, in VLSI placement problems tm ~ te, and in
traveling salesman problems tm ~ te. Reconciling tm leads to a speedup of less than 2.5 on
30 processors. As a result, this approach holds little promise for such applications.

3 Altered Generation Algorithms

Even if a parallel annealing algorithm computes cost-functions exactly, it may not mimic
the statistical properties of a sequential implementation. Often, state generation must be
modified to reduce inter-processor communication. These altered generation methods change
the pattern of state space exploration, and thus change the expected solution quality and
execution time.

3.1 Spatial Decomposition

In spatial decomposition techniques, we distribute state variables among the processors, and
variable updates are transmitted between processors as new states are accepted. Spatial
decomposition techniques are typically implemented on message-passing multiprocessors.

In synchronous decomposition, either processors must carefully coordinate move genera­
tion, or processors must not generate moves that affect other processors' state variables. We
call the resulting two techniques cooperating processors and independent processors.

3.1.1 Cooperating Processors

A cooperating processor algorithm disjointly partitions state variables over the processors. A
processor that generates a new state notifies other affected processors. Then, those processors
synchronously evaluate and update the state. If a proposed move could interfere with another
in-progress move, the proposed move is either delayed or abandoned.

One such program minimizes the number of routing channels (the slots where wires lie)
for a VLSI circuit [9]. The cost is the total number of routing channels that contain at least
one wire; two or more wires can share the same routing channel, if they don't overlap.

The program first partitions a set of routing channels across the processors of an iPSC/2
Hypercube; that processor assignment henceforth remains fixed. Processors proceed in a
lockstep communication pattern. At each step, all processors are divided into master-slave
pairs. The master processor randomly decides among four move classes:

Intra-displace The master and slave each move a wire to another channel in the same
processor.

Inter-displace The master processor moves one of its wires to a channel in the slave
processor.

9

Intra-exchange Each master and slave each swap two wires in the same processor.

Inter-exchange The master swaps a wire from one of its channels with a wire in the slave.

Experiments indicate superlinear speedups, from 2. 7 on 2 processors to 17. 7 on 16 proces­
sors. These apparently stem from a nearly-optimal initial state and more-constrained parallel
moves, making the reported speedups untenable. However, the decomposition method itself
is sound.

3.1.2 Independent Processors

In independent processor techniques, each processor generates state changes which affect only
its own variables. Under this system, a fixed variable assignment would drastically limit
state-space exploration, and produce an inferior result; it requires periodic state variable
redistribution.

After
annealing

step.

Processor o Processor1

Figure 6: Rubber Band TSP Algorithm

Processor P

One such technique optimizes traveling salesman problems [14]. A traveling salesman
problem (TSP) consists of a collection of cities and their planar coordinates. A tour that
visits each city and returns to the starting point forms a solution; the solution cost is its
total length.

We construct an initial, poor-quality solution by putting the cities into a random se­
quence: the tour visits each in order and returns to the first city. We stretch this string of
cities out like a rubber band, and evenly divide the two parallel tracks among the processors,
as shown in Figure 6. The state variables consist of the endpoints of each two-city segment.

Each processor anneals the two paths in its section by swapping corresponding endpoints.
After a fixed number of tries in each processor, the total path length is computed, and a

new temperature and a shift count are chosen. Each processor then shifts the path attached
to its top left node to the left, and the path attached to its bottom right node to the right,
by the shift count. This operation redistributes the state variables, ensuring that the whole
state space is explored. Annealing continues until it satisfies the stopping criterion.

In one experiment, the 30 processor versus 2 processor speedup ranged from about 8 for
a 243 city TSP, to 9.5 for a 1203 city TSP. Unfortunately, a single processor example was not
discussed. The paper does not show final costs; final cost probably increases as the number
of processors increases. Other spatial decomposition techniques exhibit similar behavior and
speedups [15, 16].

3.2 Shared State-Space

Shared state-space algorithms make simultaneous, independent moves on a shared-memory
state-space: no cost-function errors can occur.

One such algorithm optimizes VLSI gate-array placement [7]. Changes in the state
generation function, resulting from the locking of both cells and wires, caused the algorithm
to generate poor convergence. Maximum speedup was 7.1 for 16 simulated RP3 processors,
solving a uniform 9 x 9 grid problem. Improving the parallel algorithm's convergence would
reduce its speedup below 7.1.

A similar algorithm for minimizing the equal partition cut-set (see section 4.2) obtained
a dismal speedup close to 1 on 16 processors [17].

Another shared state-space algorithm constructs conflict-free course timetables [18]. Be­
fore evaluating a move, the algorithm must lock the instructors, courses and rooms for two
time periods, then swap them. If the locks conflict with an in-progress move, the locks are
abandoned and another move is generated. Speedup was compared against an optimized
sequential algorithm. With 8 processors, a speedup of 3.2 was obtained in scheduling 100
class periods, while 6.8 was obtained in scheduling 2252 class periods.

3.3 Systolic

The systolic algorithm relies on the property that simulated annealing brings a thermody­
namic system toward the Boltzmann distribution [19, 20].

Suppose we have P processors, and we maintain the same temperature for a chain of N
generated states. We would like to divide these moves into P subchains of length L = P/N,
and execute them on different processors. Figure 7 shows a corresponding data flow graph
for this decomposition.

At any PICK node on processor p, we must decide between state S(n-I,p) computed by pro­
cessor p at temperature Tn-I, and state S(n,p-I) computed by processor p - 1 at temperature
Tn. We make the choice according to the Boltzmann distribution. The relative probability
of picking S(n-l,p) is

(1)

11

Processor 1 Processor 2 Processor P
I
I Perform

T1 I
)

' '> ,,
I

T2 I
J

'
I

T3 I
I
'

Figure 7: Systolic Algorithm

and the relative probability of picking S(n,p-l) is

(2)

where S is the entire state space and s l is a minimum cost state. Z(T) is the partition
function over the state space, namely

Z(T) = L ef(s)/T

sES

The PICK node then selects S(n-l,p) and S(n,p-l) with probabilities

Po
p(s(n-1,p)) = + ,

Po P1

(3)

(4)

If we don't know the minimum cost, we can't evaluate f(sl). A lower bound must suffice
as an approximation. Choosing a lower bound far from the infimum will increase execution
time or decrease solution quality [8).

The partition function, Z, requires the evaluation of every state configuration. The
number of state configurations is typically exponential in the number of state variables,
making exact computation of Z unreasonable.

As a result, the systolic method uses an approximate Z. In the temperature regime where
the exponential function dominates, p0 and p1 are almost completely determined by their

12

numerators in Equations 1 and 2. The influence of Z(T) thus becomes small, and it can be
approximated by the normal distribution.

How does the algorithm perform? With 8 processors operating on a 15 x 15 uniform grid
of cities, the systolic algorithm obtained a mean path-length of 230, at a speedup of about
6.2, while the sequential algorithm obtained an average of about 228.5. Accounting for the
less optimal parallel result, the effective speedup is something less than 6.2.

4 Asynchronous Algorithms

Without sufficient synchronization, different processors can simultaneously read and alter
dependent state-variables, causing cost-function calculation errors. Such algorithms are
asynchronous. Imprecise cost-function evaluation accelerates sequential simulated anneal­
ing under certain conditions [21, 22]; a similar effect accompanies asynchronous parallel
simulated annealing.

These algorithms use a method related to chaotic relaxation-processors operate on out­
dated information [23]. Since simulated annealing randomly selects hill-climbing moves, it
can tolerate some error; under the right conditions, annealing algorithms can evaluate the
cost using old state information, but still converge to a reasonable solution. This property
holds for genetic algorithms, as well [24].

Error tolerance provides a great advantage in multiprocessing: when processors inde­
pendently operate on different parts of the problem, they need not synchronously update
other processors. A processor can save several changes, then send a single block to the other
processors. The processor sends less control information and compresses multiple changes
to a state variable into one, reducing total communication traffic. In addition, if updates
can occur out-of-order, synchronization operations are reduced. Asynchronous algorithms
require a minimum synchronization: two processors acting independently must not cause
the state to become inconsistent with the original problem.

Figure 8 shows how errors arise in a spatially decomposed traveling salesman problem.
In the figure, variables a0 and a 1 denote the endpoints of edge a. The simulated annealing
algorithm swaps endpoints to generate a new state. The algorithm partitions the cities over
two processors. A processor may only swap endpoints that point to its vertices, ensuring
problem consistency. However, to reduce synchronization time, processors do not lock edges
while they evaluate the cost-function.

While processor 0 considers swapping endpoint a0 with b1 , processor 1 considers swapping
endpoint a 1 with b0 • Processor 0 sees a path-length change for its move of LlE = 2 (1-v'2) ~
-0.818. Processor 1 also sees LlE :::::: -0.818, for its move.

Processor 0 makes its move, by swapping a0 and b1 . Now, processor 1 makes its move,
thinking its LlE :::::: -0.818 (a good move) when the effect is LlE :::::: +0.818 (a bad move).
At low temperatures, the error will degrade the final result unless corrected by a later move.
So, simulated annealing does not have an unlimited tolerance for errors.

Cost-function errors usually degrade convergence quality, when all other factors are fixed:

13

(0, 1)

co
(0,0)

processor
0

d1

(1,0)

processor
1

(0, 1)

co
(0,0)

b1

an

I

I bo

I
I
I
I
I
I
I a1 I

processor O
moves

(1, 1)

do

(0, 1)

processor 1
moves

Figure 8: Cost-Function Errors in Spatial Decomposition

(1, 1)

note the contrast with altered state generation. For example, experiments have shown that
VLSI placement quality decreases as errors increase [4, 25].

Several authors have conjectured that annealing properties might be preserved when the
errors are small. Experimental evidence bears this out [4, 7, 26, 27, 28]. However, we can
easily construct a problem which converges well under sequential simulated annealing, but
will likely converge to a bad local minimum in an asynchronous program.

Consider a system with two state variables x and y, so some states= (x, y) ES. Let the
cost-function be f(x + y), shown in Figure 9. Now put x and yon two separate processors.
Each processor proposes a move: processor O generates x +- x-1, while processor 1 generates
y +- y - 1. In both cases, f:lE < O, so each move will be accepted.

The cost-function error causes the state to jump to a high local minimum. At low
temperatures, the annealing algorithm probably will not escape this trap.

4.1 Asynchronous Spatial Decomposition

Asynchronous spatial decomposition methods, like the synchronous methods in section 3.1,
partition state variables across different processors. However, in asynchronous algorithms
each processor also maintains read-only copies of state variables from other partitions.

When a processor evaluates a new state, it uses only local copies of state variables. In
some programs, when a move is accepted the new state information is immediately sent to
other processors [26]. In other programs, a processor completes a fixed number of tries,
called a "stream," before transmitting the modifications [4, 25]. Longer streams increase
the execution-to-communication ratio, gaining a speedup, but they also increase calculation
errors, reducing the solution quality.

14

t
f (x+y)

x+y

..
Resulting state

Processor O proposes x <- x-1
Processor 1 proposes y <- y-1

"--- Starting state

Figure 9: Errors Can Cause Annealing Failure

4.1.1 Clustered Decomposition

The clustered decomposition technique solves two concurrent optimization problems: the
specified target problem and assigning the state variables to processors.

In one example, the target problem is VLSI macro-cell placement, and the assignment
problem is cell partitioning [29]. Overlap penalties in the VLSI cost-function generate the
largest errors-when two cells owned by different processors are moved to the same empty
location, neither processor will see an overlap, but the overlap error might be huge. This leads
to a clustering problem: divide state variables (macro-cells) equally among the processors,
while putting dependent variables (adjacent or connected macro-cells) on the same processor.

We compute the assignment cost-function, for VLSI macro-cell placement, as follows.
Let C be the set of cells, let C = { C1 , ... , Gp} be the partition of C over P processors, let c
be a cell's vector center and let lei be its scaler area. For each processor p, we can compute
the center of gravity Xp of its partition GP

(5)

and its inertial moment

rp = I: lie - Xpll2 • lei (6)
cECp

The assignment cost-function for partition C is

p

fc(C) =We. I:ri (7)
i=l

15

where We is a weighting factor.
Experiments used the same temperature for both partitioning and placement: indepen­

dent temperature schedules would probably improve the result. A 30 macro-cell problem,
running on an 8 processor, shared-memory Sequent 8000, reached a speedup of 6.4 against
the same algorithm running on a single processor.

Clustering improved convergence. We express a result's excess cost as Efina1 -Ernin, where
Efina1 is the result's cost, and Emin is the best solution known (presumably close to optimal).
Clustering reduced the excess cost in a 101 cell, 265 wire problem by about 15%.

400r---.----.--.--,-,--r--,-...-r----r-.--r.--,-,~.----.--.----.--,-r-r,-;-i

- 16 Streams/1 Try per Stream
- - 8 Streams/2 Tries per Stream
- 4 Streams/-! Tries per Stream

300
-----· 2 Streams/8 Tries per Stream

Energy Error

200

100

0 L__.J..__--L..,_..J_L.L.J...U,.l_---~::::::::.L...J......JLJ...J...LL _ _J__J__L.--1....L.J....LJ.J

100 101 102 ,o3
Temperature

Figure 10: Spatial Decomposition, 16 Tries per Block

4.1.2 Rectangular Decomposition

A simpler approach, rectangular decomposition, tries to accomplish the same goals. It divides
the grid of a VLSI placement problem into disjoint rectangles, then shifts the boundaries
after each stream [4]. At low temperatures, interdependent state variables typically share a
rectangle.

Different variants were tried: placing restrictions on the minimum width of a rectangle
and "fuzzing" the rectangle boundaries. All rectangular decomposition schemes produced

16

small errors and converged close to the minimum. In contrast, random landing point assign­
ment on identical problems produced greater errors and converged to a much higher final
cost [25].

One rectangular decomposition experiment fixed the number of generated states in a
block of P N tries, where N is the stream length and P is the number of processors. Figure
10 displays the resulting errors. The error value is c: = l~E - ~Epl, where ~Eis the actual
cost change after completion of a stream, and ~Ep is the sum of the apparent cost changes
observed by the processors. Increasing P also increases c:, as one might expect.

4.2 Asynchronous Shared State-Space

Asynchronous shared state-space algorithms keep all state variables in shared memory. Pro­
cessors competitively lock state variables, make moves, and unlock. Unlike synchronous
algorithms, processors need not lock all affected state variables; they need only lock those
variables required for problem consistency.

One experiment compared synchronous and asynchronous algorithms for VLSI gate-array
placement [7]. Under a simulated RP3 environment, three methods were tried. Method A, a
synchronous shared state-space algorithm, is described in section 3.2. Each processor locked
two circuits and any attached wires before attempting a swap.

In method Bl, an asynchronous algorithm, processors lock only the two cells in the
proposed move, and calculate the new wire length with possibly-changing information. Each
processor maintains a local copy of the histogram, which holds a collection of intermediate
cost function variables [1]. A move updates only the local histogram; at the completion of a
stream, each processor corrects its histogram with global state information.

Method B2 operates like Bl, except that it never corrects the local histograms. Thus,
histogram information becomes progressively outdated as the temperature falls.

Method Bl converged well with a maximum of 8 processors. Method B2 converged
imperfectly, but surprisingly enough it converged better than a random spatial decomposition
technique [25].

Using extrapolated simulation measurements for a 900 cell placement problem running
on 90 processors, researchers estimated a speedup of about 45 for Method A, and 72 for
Method Bl and B2 [30].

Another experiment compared synchronous and asynchronous shared state-space algo­
rithms for the equal partition cut-set problem [17]. Given a graph with an even number of
vertices, such algorithms partition the vertices into two equal sets, and minimize the number
of edges which cross the partition boundary. The synchronous algorithm locked both vertices
and edges, while the asynchronous algorithm locked only vertices.

On a 250 vertex graph, the synchronous algorithm ran more slowly than a sequential
implementation, except at 16 processors where the speedup was close to 1. The asynchronous
algorithm ran faster than the sequential algorithm, yielding 16-processor speedups from 5
on a graph with mean vertex degree 10, to 11 on a graph with mean vertex degree 80.

17

These two experiments indicate that asynchronous execution may be very beneficial in
simulated annealing.

5 Hybrid Algorithms

Hybrid algorithms recognize that different schemes may be more appropriate at different
temperatures. We provide only a cursory review, since previous sections provide algorithmic
details.

5.1 Modified Systolic and Simple Serializable Set

One hybrid combines a modified systolic algorithm and a simple serializable set algorithm
(12]. In the modified systolic algorithm, independent processors copy the current state, then
complete a stream of moves at the same temperature. The PICK operation chooses among the
results, as per Equations 1 and 2. Equal temperatures for PICK simplify the computations.

At high temperatures, where most moves are accepted, Algorithm SSS provides little
benefit-here only the systolic algorithm is used. As the lower temperatures reduce the
acceptance rate, the program combines Algorithm SSS with systolic. Finally, at extremely
low acceptance rates, the program uses Algorithm SSS exclusively.

Researchers claim this hybrid is slightly faster than the systolic algorithm alone (19].

5.2 Random Spatial Decomposition and Functional Decomposi-
tion

Another approach combines asynchronous spatial decomposition with functional decompo­
sition (31]. This program randomly distributes the state variables across processors in an
iPSC hypercube, to perform VLSI macro-cell placement.

With a 20 macro-cell problem, on a 16 processor iPSC, the algorithm obtained speedups of
between 4 and 7.5. Considering the small problem size and the message-passing architecture,
the speedup appears very good.

5.3 Heuristic Spanning and Spatial Decomposition

One implementation uses heuristic spanning, a non-simulated annealing technique, and asyn­
chronous rectangular decomposition to perform VLSI placement (28].

The heuristic spanning algorithm chooses several random starting states, and iteratively
improves each. For the high-cost regime, heuristic spanning shows better convergence be­
havior than simulated annealing.

In the low cost regime, rectangular decomposition refines the state space to a lower final
cost than heuristic spanning could achieve. The rectangular decomposition method showed
a speedup of 4.1 on 5 processors, and an extrapolated speedup of 7.1 on 10 processors.

18

Using the hybrid technique, researchers estimate speedups of 10-13 on 10 processors, when
compared to a standard simulated annealing algorithm.

5.4 Functional Decomposition and Simple Serializable Set

In another hybrid algorithm, functional decomposition operates at high temperatures, and
simple serializable set operates at low temperatures [11]. The poor behavior of Algorithm
SSS at high temperatures justifies a different algorithm.

In this early work, researchers sought to avoid convergence problems by using only serial­
like algorithms-little was known of altered-generation or asynchronous algorithms. On a
100 cell gate-array placement problem, they achieved a maximum speedup of 2.25 on a 4
processor VAX 11/784.

6 Conclusion

We can neatly categorize parallel simulated annealing techniques into serial-like, altered gen­
eration, and asynchronous algorithmic classes. Experimental comparisons of these different
techniques have appeared only recently, and have been limited in scope [4, 7, 11, 28].

Based on this survey, it appears that asynchronous and altered generation algorithms
have provided the best overall speedup, while one serial-like technique, simple serializable
set, has been incorporated advantageously at low temperatures. Several experiments indicate
promising speedups in asynchronous algorithms.

Fruitful areas of parallel simulated annealing research include the following: empirical
comparisons of the three algorithmic classes, using identical problems; characterization of an­
nealing state spaces amenable to altered generation and asynchronous parallel annealing; the
development of tuned temperature schedules which compensate for errors in asynchronous
algorithms; and adapting work in related areas, such as computational ecologies, to parallel
annealing. My colleagues and I are currently exploring these areas.

Acknowledgements

Milos D. Ercegovac, Frederica Darema, Stephanie Forrest, Dyke Stiles, Steve R. White,
Andrew Kahng, Richard M. Stein, M. Dannie Durand, Andrea Casotto, James Allwright, and
Jack B. Hodges reviewed an early draft of this paper, and provided many helpful comments.
Responsibility for errors rests with the author.

7 References

[1] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671-680, 1983.

19

[2] Carl Sechen, Kai-Win Lee, Bill Swartz, Jimmy Lam, and Dahe Chen. TimberWolfSC
version 5.4: Row-based placement and routing package. Technical report, Yale Univer­
sity, New Haven, Connecticut, July 1989.

[3] Bernardo A. Huberman and Tad Hogg. The behavior of computational ecologies. In
The Ecology of Computation, pages 77-113. Elsevier Science Publishers B.V., 1988.

[4] Daniel R. Greening and Frederica Darema. Rectangular spatial decomposition methods
for parallel simulated annealing. In Proceedings of the International Conference on
Supercomputing, pages 295-302, Crete, Greece, June 1989.

[5] Mark Jones and Prithviraj Banerjee. Performance of a parallel algorithm for stan­
dard cell placement on the intel hypercube. In Proceedings of the ACM/IEEE Design
Automation Conference, pages 807-813, 1987.

[6] V. Faber, Olaf M. Lubeck, and Andrew B. White, Jr. Superlinear speedup of an efficient
sequential algorithm is not possible. Parallel Computing, 3(3):259-260, July 1986.

[7] Frederica Darema, Scott Kirkpatrick, and Alan V. Norton. Parallel algorithms for
chip placement by simulated annealing. IBM Journal of Research and Development,
31(3):391-402, May 1987.

[8] Jimmy Lam. An Efficient Simulated Annealing Schedule. PhD thesis, Yale University,
New Haven, CT, December 1988.

[9] R. Brouwer and P. Banerjee. A parallel simulated annealing algorithm for channel
routing on a hypercube multiprocessor. In Proceedings of the International Conference
on Computer Design, pages 4-7, 1988.

[10] Joseph Bannister and Mario Gerla. Design of the wavelength-division optical network.
Technical Report CSD-890022, UCLA Computer Science Department, May 1989.

[11] Saul A. Kravitz and Rob A. Rutenbar. Placement by simulated annealing on a mul­
tiprocessor. IEEE Transactions on Computer-Aided Design, CAD-6(4):534-549, July
1987.

[12] F.M.J. de Bont, E.H.L. Aarts, P. Meehan, and C.G. O'Brien. Placement of shapeable
blocks. Philips Journal of Research, 43(1):1-27, April 1988.

[13] Roger D. Chamberlain, Mark N. Edelman, Mark A. Franklin, and Ellen E. Witte.
Simulated annealing on a multiprocessor. In Proceedings of the International Conference
on Computer Design, pages 540-544, 1988.

[14] James R.A. Allwright and D.B. Carpenter. A distributed implementation of simulated
annealing for the travelling salesman problem. Parallel Computing, 10(3):335-338, May
1989.

20

[15] Edward Felten, Scott Karlin, and Steve W. Otto. The traveling salesman problem on
a hypercubic, mimd computer. In Proceedings of the 1985 International Conference on
Parallel Processing, pages 6-10, St. Charles, Pennsylvania, 1985.

[16] Srinivas Devadas and A. Richard Newton. Topological optimization of multiple level
array logic: On uni and multi-processors. In Proceedings of the International Conference
on Computer-Aided Design, pages 38-41, Santa Clara, CA, November 1986.

[17] M.D. Durand. Cost function error in asynchronous parallel simulated annealing algo­
rithms. Unpublished manuscript, 1989.

[18] D. Abramson. Constructing school timetables using simulated annealing: Sequential
and parallel algorithms. Technical Report TR 112 069, Department of Communica­
tion and Electrical Engineering, Royal Melbourne Institute of Technology, Melbourne,
Australia, January 1989.

[19] Emile H.L. Aarts, Frans M.J. de Bont, Erik H.A. Habers, and Peter J.M. van Laarhoven.
A parallel statistical cooling algorithm. In Proceedings of the Symposium on the Theo­
retical Aspects of Computer Science, volume 210, pages 87-97, January 1986.

[20] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equations of state calculations by fast computing machines.
Journal of Chemical Physics, 21(6):1087-1091, June 1953.

[21] Saul B. Gelfand and Sanjoy K. Mitter. Simulated annealing with noisy or imprecise
energy measurements. to appear in Journal of Optimization Theory and Applications,
1989.

[22] Lov K. Grover. Simulated annealing using approximate calculation. In Progress in
Computer Aided VLSI Design, volume 6. Ablex Publishing Corp., 1989. (also as Bell
Labs Technical Memorandum 52231-860410-01, 1986).

[23] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and Its Applications,
2(2):199-222, April 1969.

[24] Prasanna Jog and Dirk Van Gucht. Parallelisation of probabilistic sequential search
algorithms. In Genetic Algorithms and Their Applications: Proceedings of the Second
International Conference on Genetic Algorithms, pages 170-176, 1987.

[25] Rajeev Jayaraman and Frederica Darema. Error tolerance in parallel simulated anneal­
ing techniques. In Proceedings of the International Conference on Computer Design,
pages 545-548. IEEE Computer Society Press, 1988.

[26] Prithviraj Banerjee and Mark Jones. A parallel simulated annealing algorithm for
standard cell placement on a hypercube computer. In Proceedings of the International
Conference on Computer-Aided Design, pages 34-37, November 1986.

21

[27] Lov K. Grover. A new simulated annealing algorithm for standard cell placement. In
Proceedings of the International Conference on Computer-Aided Design, pages 378-380.
IEEE Computer Society Press, November 1986.

[28] Jonathan S. Rose, W. Martin Snelgrove, and Zvonko G. Vranesic. Parallel standard cell
placement algorithms with quality equivalent to simulated annealing. IEEE Transac­
tions on Computer-Aided Design, 7(3):387-396, March 1988.

[29] Andrea Casotto, Fabio Romeo, and Alberto Sangiovanni-Vincentelli. A parallel sim­
ulated annealing algorithm for the placement of macro-cells. IEEE Transactions on
Computer-Aided Design, CAD-6(5):838-847, September 1987.

[30] Frederica Darema, Scott Kirkpatrick, and V. Alan Norton. Parallel techniques for chip
placement by simulated annealing on shared memory systems. In Proceedings of the
International Conference on Computer Design, pages 87-90, October 1987.

[31] Rajeev Jayaraman and Rob A. Rutenbar. Floorplanning by annealing on a hypercube
multiprocessor. In Proceedings of the International Conference on Computer-Aided De­
sign, pages 346-349, November 1987.

22

