
Agile Enterprise Metrics
Daniel R Greening

Senex Rex
 dan@senexrex.com

Abstract

Key performance indicators are used by
some large enterprises to alert executives to
opportunities and dangers. Executives seek
“leading indicators” to help them make decision
early enough to make a difference.

In large enterprises adopting agile
practices, managers sometimes use behavioral
compliance metrics to help teams self-assess or
to gauge how practices are performed. These
often cause dysfunctions, especially when
coupled with incentives to meet metric-based
targets.

We outline a set of scalable metrics that
articulate the “Why?” of agile practices, and
allow freedom for teams to explore their own
approaches. Anecdotally, these approaches seem
to produce improved Product Owner
communication, team member alignment, more
accurate forecasting and higher quality software
production.

1 Introduction

What are our capabilities and risks, as a
team or organization? How agile are we? How
can we improve? Agilists and managers often
ask these important questions.

Some efforts to measure agility have
focused on self-assessment of behavioral
activities, including the Nokia Test [vodd2005]
and the Scrum Checklist [knib2010].
Unfortunately, these behavioral metrics rarely
scale naturally beyond a few teams.

Organizations, such as Nokia, have
attempted to apply behavioral metrics to
hundreds of teams, sometimes to help direct
coach attention to behavioral problems
[sims2008]. If the organization establishes metric
targets, the inherent reliance on self-reporting
virtually assures questionable results.

Can we find agile metrics that scale to
products or businesses? Merely aggregating the
agility metrics of individual teams creates a
local-optimization problem. For example, an

organization can have highly agile behavior at
the team level, but if the teams are structured
into small interdependent component teams, the
organization’s release time can be so long it
cannot adapt rapidly to changing market need
[larm2010].

Agile production is characterized by short
iterations that produce usable product
increments. Short iterations force team members
to contribute outside their primary specialty to
achieve delivery. Agile teams use metric-based
hypotheses to motivate process improvement.
Agile teams make conscious tradeoffs between
utility and consistency. Agile teams consciously
assess risks and devise production experiments
that reduce risk.

Each of these characteristics directly
contributes to a business outcome: Short
iterations allow a business to adapt rapidly to
market changes. Multi-skilled team members
reduce risk of production interruptions when a
specialist is unavailable or when the work load
overwhelms. Empirical forecasting provides
statistically defensible release dates and allows
the company to make thoughtful tradeoffs in
scheduling features for development. Empirical
risk identification, by shipping software rapidly
and finding bugs early, allows the team to
quantify risk and cancel features or even whole
projects before too much money is spent.

Such concepts are scalable: they can apply
not only to a 7-person Scrum team, but also to a
large production effort or even an executive
team.

For example, average product release
duration, the large-scale equivalent of Sprint
length, can be used at a company-level to assess
its agility [gree2012], A combination of
widespread Scrum and Enterprise Scrum
practices drove the average release duration at
Citrix Online from roughly 20 months down to
less than 4 months.

Assuming that metrics are used for Good
(insight into company behavior) and not Bad
(creating incentives that motivate gaming), what
other scalable metrics can help us assess the
agility of organizations large and small?

2015 48th Hawaii International Conference on System Sciences

1530-1605/15 $31.00 © 2015 IEEE

DOI 10.1109/HICSS.2015.597

5038

1.1 Scrum Framework

To help us better create scalable metrics, let
us consider the fundamentals of Scrum as
scalable concepts.

Scrum is a process framework in which
teams can experiment, analyze and improve
production. It is not a process because many key
process aspects are left open, intending that the
team self-organize to establish and adapt process
rules.

Scrum is rhythmic. Scrum teams produce
working software on a cadence. At the Scrum
team level, Sprints are every-4-weeks or less.
This short production cycle time helps reveal
risks and constraints to the team, and challenges
the team to remove them. Shorter Sprint
cadences can increase Scrum’s adaptation rate,
but can also cause relative production
overhead—such as building, localizing, testing
and releasing the software—to increase. The
induced tension to reduce production overhead
can help motivate important organizational
changes.

Scrum is experimental. Scrum teams
perform a sequence of meetings that form a
production experiment: A Retrospective Meeting
determines the process rules to be used in the
next Sprint. Teams construct the experimental
hypothesis in a Retrospective Meeting: “If we
change the process this way, we will improve
our production that way.” For example, a team
might say, “If we change our Done Criteria to
require automated tests, our velocity will
improve in the next Sprint,” is an experiment
many Scrum teams try.

Scrum for software development usually
includes other ritual meetings that teams have
found useful. A Sprint Planning Meeting follows
the team’s current process rules to choose
Product Backlog Items (PBIs) that the team
intends to complete in the Sprint (once the team
commits to try to complete them, PBIs become
Sprint Backlog Items). Daily Scrum Meetings
bring team members together to share
information on yesterday’s completed work,
today’s intended work, and impediments. A
Sprint Review Meeting brings the team and
external stakeholders together to review the
Sprint Increment and consider new items that
might be added to the Product Backlog.

Immediately following the Sprint Review, a
new Sprint begins with a Sprint Retrospective. A
typical beginning of a Sprint Retrospective
measures the team’s production (velocity,
happiness, quality, etc.), and compares it to the

hypotheses. “What went well? What went badly,
What could we change in the coming sprint?” is
the standard mantra of many Sprint
Retrospectives, and in this mantra we have
assessed the past experiment and proposed one
or more new ones.

Scrum seeks improvement. The goal of the
Retrospective meeting is to identify and adopt
process changes that improve the team’s
production.

Scrum measures production. In Scrum’s
rhythmic experiment, the most common
production metric is Velocity, the rate at which
the team completes features. However, teams
sometimes add other production metrics, such as
value, customer reported bugs, test coverage,
security risk, team happiness, etc.

Other Scrum characteristics seem to be
“discoveries” that have arisen from Scrum’s
rhythmic experimentation. There are three
roles in a Scrum Team. A Product Owner
articulates candidate features and team activities
as Product Backlog Items, and orders those items
based on relative current ROI (which may
incorporate the value of market learning, or
building a dependency before it is needed).
There are roughly 3-7 Development Team
members who estimate the effort to complete
Product Backlog Items during Sprint Planning
Meeting, and complete the work during the
Sprint. A Scrum Master facilitates team
meetings, enforces team-consensus process rules
and working agreements, and helps remove
impediments during the Sprint.

This division of labor helps Scrum Team
Members focus on their roles in the experiment.
Product Owners can articulate what might be
produced, from a stakeholder perspective, and
can work with stakeholders to find out how
valuable those items are. Development Team
Members can estimate the time required to
complete Product Backlog Items. And Scrum
Masters serve as research facilitators: controlling
the experimental conditions and enforcing the
process rules being examined by the Sprint
experiment.

2 Metrics

Considering our basic Scrum model, what
metrics reveal a team’s effectiveness?

In working with large organization
containing dozens or hundreds of teams, my
colleagues and I have found the following
metrics useful.

5039

2.1 True Sprint Length

As a business, the release rhythm of a team
helps us understand its agility: What’s the likely
time it will take to ship a Sprint Increment
containing a Product Backlog Item recently
added to the top of a Product Backlog? Most
presume this is the “Sprint Length,” but there are
complicating factors.

Can the team actually ship every Sprint? We
have found in our practice that too-often the
team cannot ship in what it calls a “Sprint”.
Instead some teams ship in a certain multiple of
Sprints. I’ve encountered teams that followed
this mini-waterfall cadence:

Sprint 1 2 3 4

Activity Dev Dev Dev
Localize

Test
Sec. Check

What does the velocity of Sprints 1, 2 and 3

mean in this case? If the claimed Sprint Length is
2 weeks, one might assert, “The True Sprint
Length is 8 weeks.” But even this optimistically
assumes that all regression bugs from PBIs
developed in Sprint 1 and detected in Sprint 4
can be fixed in Sprint 4. To responsibly report
velocity for the four Sprints we would have to
retroactively remove supposedly “completed”
PBIs that failed Sprint 4 testing, and put them
back in the backlog. But this is a huge, complex
undertaking. I’ve never seen anyone do this,
instead they effectively extend their mini-
waterfall True Sprint by an extra Sprint or more
to fix the bugs. And here, we have violated a
timebox principle of Scrum: We don’t extend
Sprints.

Your head may be hurting now. Mine is.
The value of reporting the True Sprint is

simply this: when the True Sprint length is
longer than the team’s stated Sprint Length,
there’s a dysfunction.

I ask mini-waterfall teams to first report and
track honestly, sometimes even recommending
they use an 8-week Sprint length, and work to
reduce that to 4 weeks with sincerity,
incorporating everything required to ship.

True Sprint Length is time required for the
team to assess the value, quality and market
acceptance of a feature. Assuming velocity,
quality and other metrics are constant, lowering
True Sprint Length is better because the team
can more rapidly adapt to actual production and
market discoveries.

2.2 Velocity

Velocity measures work completed in a
Sprint. In some teams, velocity is a count of the
number of Product Backlog Items completed in a
Sprint. In others, it is the sum of the estimation
points a team assigned to Product Backlog Items
completed in a Sprint. Teams only report the
points from shippable Product Backlog Items.

Velocity can be used in these ways:
• To forecast when the team might complete

PBIs later in the Product Backlog, in the same
way that a car’s velocity supports a first-
approximation forecast for when it will reach a
distant city.

• To help a team plan a Sprint, taking in only the
number of PBIs likely to complete (and thus
helping the team focus).

• Assessing the effect of process changes
adopted in a previous Sprint Retrospective. To
accomplish this third goal with velocity, teams
must use relative estimation units rather than
estimated time. [cohn2005].

• Apportioning cost for accounting purposes
[gree2013].

2.3 Velocity Deviation

Some managers, agile trainers and coaches
state that “consistent”, “stable” or “predictable”
velocity is a sign of a maturing team. Here I
argue stable velocity is not necessarily good, but
measuring its stability can create insight in the
company and help better forecast ship dates.

A metric for the magnitude of velocity
inconsistency is the percent standard deviation of
the velocity, σ(V)/Μ(V), where Μ(V) is the
expected velocity (often approximated as the
average velocity over some number of previous
Sprints) and where σ(V) is the standard deviation
of the velocity. We will call this the velocity
deviation. This can be used to compare teams,
even those with different story point scales.

Many factors can contribute to high velocity
deviation: unanticipated impediments and sloppy
estimation are the factors these managers seek to
reduce by lauding consistency.

However, innovation, tackling significant
impediments, trying a new process or learning
new skills can also increase a team’s velocity
deviation. These “good” things, which may help
the team succeed, will decrease estimation
accuracy and increase velocity deviation.

Teams with low deviation, in my
experience, are often internally dysfunctional.

5040

Imagine a team with σ(V)/Μ(V)=0. Like a
fraudulent scientist forging the unruly data to fit
the desired curve, someone on the team, or the
team as a whole, is likely forcing production rate
to fit the mean velocity, Μ(V), by padding,
sandbagging or outright falsification. In
environments where consistency is encouraged,
even when there are no reported metrics, teams
often become dysfunctional.

Teams with high deviation usually have
external randomizing impediments or are
exploring strange new worlds (innovating).

If you’re an executive or coach in a large
company, and one of your teams has a high or
low velocity deviation, you might want to visit
them. “Can I help with an impediment?” or
“What crazy thing are you people doing over
here (that I might learn from)?”

Finally, the standard deviation of the
velocity, σ(V), can be used to more reliably
forecast feature shipments. We will discuss thes
further when considering Forecast Horizon.

2.4 Forecast Horizon

The Forecast Horizon is the point in the
Product Backlog just before the first unestimated
Product Backlog Item. We can express its value
as the sum of estimation points, h, from the top
of the Product Backlog to that point. If we
assume a Normal distribution for velocity (a
convenient assumption for this theoretical
illustration, but likely wrong, since a Normal
distribution gives a non-zero probability for
negative velocity), and if we know the team’s
estimated velocity μ(V) and standard deviation
σ(V), we can express the Forecast Horizon in
Sprints, h/μ(V)± σ(V)*h/μ(V) Sprints for 68%
certainty or h/μ(V)± 2σ(V)*h/μ(V) for 95%
certainty. If we know the Sprint Length l, we can
now express the Forecast Horizon in units of
time, hl/μ(V)± lσ(V)*h/μ(V).

If the velocity is distributed non-Normally,
Monte Carlo simulation or more complex
mathematics can provide accurate distributions
for the Forecast Horizon. [magi2014]

Do we want Forecast Horizon to be large or
small? Some argue it should be small, pointing
to the time and effort required to estimate
Product Backlog Items. Others argue the
Forecast Horizon should be large, to give the
Product Owner more data to order the backlog
for highest profit.

A good Product Owner seeks to order the
backlog by long-term profitability, sorting items
in descending order by profit = value/cost. In

Scrum, estimation points correlate to
development cost, so when Forecast Horizon is
large, Product Owners have greater visibility to
make tradeoffs to increase total profit.

Here are the advantages of longer Forecast
Horizons
• The inclusion of Epic PBIs creates a long-term

vision for the product, and requiring teams to
estimate Epic PBIs ensures that they know
what that vision is.

• Product Owners can make better tradeoffs in
what the team produces. In my experience,
Product Owners often misjudge the cost of a
PBI (which they must implicitly estimate when
ordering an otherwise unestimate Backlog
Item). When teams correct that estimate, they
often radically change the item’s order.

• Requiring teams to rapidly estimate usually
puts pressure on the Product Owner to better
define the Product Backlog Items.

In practice, I usually ask established teams
to seek a Forecast Horizon at least 8 weeks long.
To address the estimation cost, first I teach teams
to perform “Bulk Estimation” [gree2013c},
where teams can easily relatively estimate 40
Backlog Items in roughly an hour. Second, I
teach Product Owners to construct large Epic
PBIs that have clear acceptance criteria, and
counsel teams how to estimate them (usually,
“faster than you might want, and with errors
proportional to their size, because large PBIs will
be broken down before being taken into a
Sprint”).

Different teams require different Forecast
Horizons. For example, a service team operating
Kanban-style inside Scrum (i.e., starting on new
items mid-Sprint) may responsibly have a
Forecast Horizon of zero. A component team
that serves multiple client or business partner
teams, some of which have external deadlines,
will likely want a longer Forecast Horizon (to
help client teams better plan).

2.5 Lead Time

Organizations comprising Scrum teams that
can independently ship any functionality to end
users produce an organizational lead time tl equal
to the teams’ shortest Sprint Length. Larman and
Vodde call this a “feature team organization.”
[larm2008]. However, pure feature teams are
rarely seen in practice in large enterprises—no
team has knowledge and skill coverage sufficient
to produce end-user value. In these
circumstances, user-facing teams require the

5041

output of a chain of antecedent teams to
complete a feature. Such organizations have a
“component team structure.”

Component team organizations can be
represented by a directed graph, where
infrastructure teams are antecedents to
consuming teams.

Figure 1. Team dependency graph

Figure 1 shows a portion of a team dependency
graph for a large engineering department that
produces a real-time voice and data
communication tool. From this graph, we can see
the following dependency chain:
Base Library (2w) ≺ Event Bus (2w) ≺
Notify (2-4w) ≺ Initiation (4w) ≺

Standard Library (4w) ≺ Backend (2w)
Each node of the dependency chain

represents a team. The number of weeks in a
Sprint is noted in each node. When a range is
listed, such as 2-4w, the team has stated it has 2
week Sprints, but we have discovered that the
team requires 4 weeks to produce a shipping-
quality product. (In short, the True Sprint Length
is 4 weeks.)

The shortest time required to propagate a
change made by the Base Library team,
assuming a precedent team’s Sprint end
immediately precedes a dependent team’s Sprint
beginning, is the sum of the True Sprint Lengths
of each team in the dependency chain.

However, most agile organizations
(including this one) have unsynchronized
Sprints, if for no other reason than meeting room
and attendance conflicts discourage
synchronization.

Assuming that Sprints start times are
uniformly distributed, we can model
unsynchronized Sprints by simply multiplying
the sum of the Sprint times by 1.5. For example,
when a stakeholder requests a change, Base
Library could be at any point in a Sprint. Scrum
rules prevent the team from satisfying new
requests until the next Sprint Planning, so, on
average, the request will not be started for 0.5 ×

true sprint length, resulting in an expected Sprint
lead time of 1.5 × true sprint length. Similar
logic applies to all remaining teams in the
dependency chain.

Using this logic, we can create a minimum
dependency chain lead time, tm =
SUM_teams(true sprint length)*1.5.

Many argued, when we proposed this
metric, that it was too pessimistic. Teams
actually do start working on new work mid-
sprint, sometimes because they initiate work
speculatively before their dependencies are
ready. Teams sometimes produce releasable
artifacts mid-Sprint. Teams can jointly decide on
APIs and program in parallel.

Others have argued that this model was too
optimistic. Teams sometimes produce bugs,
which introduce loops and concomitant delays.
Inter-team delays are unaccounted for by this
simplistic model.

Despite these inaccuracies, this simplistic
static dependency graph and its minimum
dependency chain lead time metric has allowed
managers to reason about organizational changes
that could make the project faster. For example,
by merging the Notify and Event Bus teams into
two parallel “feature-ish teams” that operate
from a single shared Product Backlog, and cross-
training members of those teams to be able to
independently produce both Notify and Event
Bus code, we can shrink the total lead time for
Notify+Event Bus changes by at least 3 weeks.
That 3 week improvement, since it has been
performed on upstream teams, can improve the
lead time for many downstream teams
throughout the organization.

In addition, we used this logic to improve
the organizational structure with simple,
localized changes to nearby teams.

Anecdotally, this metric produces forecasts
that have accurately predicted lead times in
several real-world cases. However, we recognize
further experimentation is needed.

2.6 Downstream Impact

Although agilists generally prefer “feature
team” organizational structures [larm2008], few
large organizations are free of component teams.
In these environments, “downstream teams” may
require contributions from “upstream teams.”

The number of downstream teams an
upstream team serves provides a rough impact
metric for bugs and delays produced by the
upstream team.

5042

Figure 2. Dependency count

Figure 2 shows an example where Standard
Library has an immediate dependent count of 15.
Bugs and delays impact immediate dependents
first.

A second impact metric is the total
dependent count, which is the count of teams in
the union of all dependent teams, immediate or
otherwise. This metric measures potential
inefficiencies introduced by a team on its
dependents.

A third impact metric is the critical path
dependent count. This counts the number of
dependent teams in a critical path that are
downstream.

This metric can be used to focus coaching
efforts on the teams whose improvement is most
likely to contribute to organizational
improvement.

3 Coaching with Metrics

In two companies, I led agile coach teams,
comprised not of ScrumMasters, but rather of
coaches who helped ScrumMasters, Product
Owners and teams improve. In each company, I
was asked, “What do you people do, and is agile
worth the effort and money required to maintain
it?”

I created a metric-driven coaching process to
address this question. Here’s how the process
works:

1. A coach and one or more members of
the team meet to discuss a problem
raised by the team or a stakeholder.

2. Coach and team work together to create
a five-whys root cause map.

3. Coach and team mutually pick a cause,
and identify a metric that should be
improved if the team mitigates the
cause.

4. Coach and team measure the team’s
current performance with the metric,
chooses a strategy to improve the
performance, and hypothesizes a

metric-based target outcome from using
the strategy.

5. Coach records the problem, the targeted
cause, the current measurement, the
target metric.

6. Coach and team apply the strategy and
report intermediate results to
management, in metric form.

7. Coach and team terminate the coaching
engagement when the target outcome is
reached.

We applied this metric-driven coaching

approach, and reported on it quarterly to upper
management. It made coaches more rigorous in
identifying problems and mitigations, and the
quarterly reports helped upper management
better understand the contributions made by
coaches. Upper management increased their
support for agile coaching while this reporting
structure was in place.

This work cannot claim the statistical rigor
of controlled studies. As practitioners, our
primary goal was to ship products. In arriving at
these metrics and approximations, we sought to
measure something that seemed likely to
correlate with good results. We present this work
perhaps to inspire further research in agile
metrics and their potential benefit.

4 Conclusion

I have described several agile metrics in a
scalable Scrum framework: Velocity, Velocity
Deviation, Forecast Horizon, True Sprint Length,
Lead Time (including a few variants, but
particularly minimum dependency chain lead
time), and Dependency Count (also including a
few variants).

I discussed how these metrics have provided
the basis for coaching reports to show how
coaches improve teams.

Further research efforts on these topics
could include surveying teams on the impact of
improving different metrics. We have discussed
anecdotal and qualitative outcomes we think
correlate with quantitative improvements.
However, we are too early in our research to
make definitive conclusions. We hope these
metric explorations inspire others (as well as
ourselves) to dig deeper.

5043

5 References

[blan2008] Steve Blank, Four Steps to the
Epiphany, Cafepress.com (Feb 1,
2005). ISBN 978-0976470700.

[busc2011] Frank Buschmann, To Pay or Not
to Pay Technical Debt, IEEE
Software, November/December
2011 (Vol. 28, No. 6) pp. 29-31.

[char2005] Robert N. Charette,"Why software
fails," Spectrum, IEEE , vol.42,
no.9, pp. 42- 49, Sept. 2005, doi:
10.1109/MSPEC.2005.1502528,
http://ieeexplore.ieee.org/stamp/sta
mp.jsp?tp=&arnumber=1502528&i
snumber=32236

[cohn2005] Mike Cohn, Agile Estimating and
Planning, ISBN 978-0131479418,
Prentice-Hall 2005.

 [gree2010] Daniel Greening, “Enterprise
Scrum: Scaling Scrum to the
Enterprise Level,” 2010 43rd
Hawaii International Conference on
System Sciences (HICSS), Hawaii
January 5-8, ISBN: 978-0-7695-
3869-3 (10 pages),
http://www.computer.org/plugins/d
l/pdf/proceedings/hicss/2010/3869/
00/10-01-01.pdf

[gree2012] Daniel Greening, “Bulk
Estimation,” 2012,
http://senexrex.com/rapid-scrum-
estimation/.

[gree2013a] Daniel Greening, “Enterprise
Agility and Release Duration,”
2013 46th Hawaii International
Conference on System Sciences
(HICSS), Hawaii January 7–10.

[gree2013b] Daniel Greening, “Why should
agilists care about capitalization?”
InfoQ,
http://www.infoq.com/articles/agile
-capitalization (Jan 29, 2013).

[knib2010] Henrik Kniberg, Scrum Checklist,
version 2.10,
https://dl.dropboxusercontent.com/
u/1018963/Scrum-
Checklist/Scrum-checklist.pdf.

 [larm2008] Craig Larman and Bas Vodde,
Scaling Lean & Agile
Development: Thinking and
Organizational Tools for Large-
Scale Scrum, ISBN 978-
0321480965, Addison-Wesley
2008.

[magi2014] Troy Magennis, Personal
communication.

[ries2011] Eric Ries, The Lean Startup, Crown
Business (September 13, 2011),
ISBN 978-0307887894.

[vodd2005] Bas Vodde, The Nokia Test,
extended with scoring by Jeff
Sutherland, 2005,
http://www.cedur.se/nokia_test2.ht
ml.

[larm2010] Craig Larman and Bas Vodde,
“Scaling Lean & Agile
Development: Thinking and
Organizational Tools for Large-
Scale Scrum,” Addison-Wesley
Professional, 2008.

5044

