
Rectangular Spatial Decomposition Methods
for Parallel Simulated Annealing

Daniel R. Greening *
Frederica Darema f

Abstract

Research on VLSI placement has extended the stan-
dard sequential simulated annealing technique to two

multiprocessing variants. In one technique, processors
perform moves on disjoint partitions of locally-stored
circuit grids. In the other, processors perform simulta-
neous moves on a shared grid. Our research explores
new techni,ques in the first category-called spatial de-
composition algorithms.

We describe the impact of cell mobility and cost-
function errors in parallel simulated annealing. We show
that changing the partition shape can affect these mea-
sures, and the quality of the final result. We also show
a trade-of? execution speed vs. increased cell mobility
and decreased cost-function errors.

We present four rectangular decomposition methods.
Using two circuit examples, we compare their conver-
gence properties to that of a “standard” random spatial
decomposition technique. Runs were performed in a
simulated RP3 environment.

One method we developed, “sharp random rectan-
gles,” converged better than the other techniques we
studied. On one example, sharp random rectangles on
8 processors converged better than standard sequential
algorithms. This promising technique allows us to in-
crease the stream-length, and thereby reduce execution
time.

The authors continue their research to better quan-
tify cell mobility and cost-function errors, and to run
the rectangular algorithms on other types of multipro-
cessors to obtain speed-up information.

*UCLA Computer Science Department
tIBM T.J. Watson Research Center

Permission to copy without fee all or p&t of this material is granted provided
that the copies are not msde or distributed for direct commercial advantage.
the ACM copyright notice and the title of the publication and its date appear,

and notice is given that copying is by,pxmission of the Association for Com-
poting Machinery. To copy othcnvise. or to republish, nquires a fee and/or
specific permission.

0 1989 ACM 0-89791-309-4/89/006,&!g5 $1.50

1 Introduction

Simulated annealing is a class of statistical hill-climbing
algorithms for solving difficult combinatorial optimiza-
tion problems, such as VLSI placement or the travel-
ing salesman problem [‘7]. Simulated annealing gives
near-optimal results for these problems, but requires a
substantial investment of computational resources. Re-
search papers discuss several techniques to reduce total
execution time, including highly-tuned annealing sched-
ules [ll] [13] 1161 and parallel processing [2] [4].

Most parallel simulated annealing methods use a
method related to chaotic relaxation [3], in that they
operate on partially erroneous information. Simulated
annealing makes hill-climbing moves based on a Monte
Carlo approach, therefore it can tolerate some error in
cost-function calculations. Thus, annealing algorithms
can evaluate the cost of a move using slightly incom-
plete or out-of-date information, but still converge to a
reasonable solution.

Error tolerance provides a great advantage in multi-
processing: when several processors proceed indepen-
dently on different parts of the problem, they need not
synchronously update state information in other proces-
sors. A processor can save several updates, then send
them in a block to the other processors. The processor
will send less control information and compress multi-
ple moves for a single cell into one move. Thus block
transmissions reduce total communication traffic.

With a few limitations, updates can occur out-of-
order, greatly reducing the number of synchronization
operations.

Quantifying the error tolerance of simulated anneal-
ing is an open theoretical issue. Relying on empirical ev-
idence, [6] claims that simulated annealing can tolerate
cost function errors of 10% with limited effect on con-
vergence. However, those results may strongly depend
on the partitioning used in [6]-random cell allocation
with unlimited Manhattan swap-distance. Grover states
that the largest tolerable error is about half the current
annealing temperature [5], but clearly this is dependent
on the cost-function used. Rose claims error reduction
is extremely important at high-temperatures [14], but
less important at lower temperatures.

295

http://crossmark.crossref.org/dialog/?doi=10.1145%2F318789.318821&domain=pdf&date_stamp=1989-06-01

I Establish Partitions

r- --. --.. -.. -. __I
.r

-. ..- _- -- -- ._ . _.
-. .m. . -- - .__. ._- .-_. - - --.- _-_.

Copy Changed Cells to local
.._A,. I ’
. ,.,, Copy Changed Ceils to LCK: i !

L-. .-. -. - -_ -..L ,

l **
Choose two cells in my regl .

- -. ..-. . .- -.

changed cells to shared Annealing Complete? Copy changed cells to shar. : I

I . ..- - . . . - _ . , YES
t

_ __. - _.. __. i .
.- ..- - -- .-. . . .

L I Done

1.1 Shared Cell-Map Algorithms

Two methods of parallel simulated annealing dominate
the literature: The “shared map” algorithms use a
shared memory cell map [l] [4] [lo]. Each process ran-
domly selects two cells for an attempted move, syn-
chronously locks the cells, calculates the cost-function
assuming the cells were swapped, and based on the
Metropolis algorithm [12] either swaps the cells or leaves
them in place. At the end of the move, the algorithm
unlocks the cells. Cost-function errors occur when two
processors simultaneously manipulate cells on the same
net.

Some algorithms [4] also lock attached nets before
swapping-assuring accurate cost-function calculations
at a greatly increased synchronization cost. Darema [4]
shows that the increased accuracy of net-locking did not
make a significant difference in the convergence quality
on a simulated multiprocessor system.

1.2 Spatial Decomposition

The “spatial decomposition” algorithms divide the a
cell map into mutually disjoint partitions, either ran-
domly [2] [6] or using a fixed pattern [8] [9], and assign
each partition to a different processor. A processor ran-
domly selects two cells within its partition, calculates
the cost-function assuming the cells were swapped, and
uses the Metropolis algorithm to decide whether to swap
the cells. No locking is required in these algorithms, be-

cause the processors operate on disjoint sets of cells.
A processor may complete several swaps, in a “swap
stream,” before sending the updated information to a
common database.

Each processor acts independently on its partition,
assuming that cells in other partitions are stationary.
Cost-function errors result because cells in other par-
titions are not stationary-they are being modified by
different processors. After a number of tries, the pro-
cesses update a global map, the controlling task repar-
titions the grid, and the process repeats. The reader
can see that using a larger swap stream (allowing more
swaps between updates) will increase calculation errors.
Note that any successful algorithm must change parti-
tion boundaries between streams, otherwise limitations
on cell-mobility will preclude a good result.

1.3 Our Work

Our research explores four new “random rectangles”
spatial decomposition schemes. Our approach divides
a virtual circuit grid into rectangular regions-the al-
gorithms differ in the restrictions placed on where the
boundaries can fall. One method, “sharp random rect-
angles” converges better than the others we studied. For
certain examples the resulting layout quality of sharp
random rectangles was higher than standard sequential
approaches!

We show that our results can be reasonably inter-
preted in terms of the increased cell-mobility and de-

296

15 I , ,110, 1 I I,,,,, I 1 I11111 I I b 1llll

- Sharp Random Rectangles
- - - 3harpt.hl.n Random Rectangles . ’ .

xl03 - Proportional Rectangles ’ , ’ \
Fuzzy Random Rectangles

f I

- - - - Manhattan 3 Random Assignment ,I’ ‘\
lo- ---- Unrestricted Random Assignment ,’

s
‘s,

,
;s
t I I
w I , , ,
w
b
E

5-

,

,

lo2
Temperature

P9: 4 Skeams/M Tries: Em-or at Different Allocations

Figure 2. Cost Function Errors vs. Decomposition Method

creased cost-function errors that occur with the rectan- processes move their cells around.
gular partitioning approaches.

2 The Algorithm

Our spatial decomposition algorithm first assigns the
cells in a VLSI circuit to random locations on a virtual
grid.

Figure 1 shows the parallel execution model. It begins
with a single processor decomposing the grid into mu-
tually disjoint partitions-in our case these partitions
are rectangular regions from the virtual grid. For com-
parison purposes, we can also generate random regions,
where each cell is assigned to a random processor. These
partitioning algorithms will be described in detail later.

All processes then proceed independently to complete
a “stream” of trial moves on their respective regions.
Each process copies the entire cell map to its local
memory-we optimize this step by copying only changed
cells to the local memory.

A process randomly chooses two cells within its re-
gion. If the two cells have Manhattan distance greater
than 3, the process repeatedly retries, randomly select-
ing another two cells until it finds two at Manhattan
distance less than 4.

It then calculates the cost function based on its local
copy of the cell map. While cells within the partition
accurately reflect their present position, cell positions
outside the partition will become outdated when other

Using the estimated change in the cost-function for
the circuit layout in the Metropolis algorithm, the pro-
cess may swap the two selected cells. If the cells are
swapped, the local cell map is changed, but copies of
the cell map in other processors are nol updated.

Finally, if the number of tries equals the “stream
length,” the process relinquishes control back to the su-
pervisor process. Otherwise, it again randomly selects
two cells, as above, and the sequence repeats.

When all processes have completed their streams, the
supervisory process creates an accurate shared copy of
the cell map, reflecting changes made in individual pro-
cessors. It determines whether the annealing schedule
is complete. If not, it changes the annealing constraints
according to the schedule, re-establishes the partitions,
and restarts the parallel processes.

2.1 Speed vs. Accuracy and Mobility

When a process moves chips within its region, the global
states viewed by the other processes become inconsis-
tent. This introduces a computation error which, un-
controlled, would destroy the quality of the resulting
layout.

To minimize these errors, the stream length must be
kept reasonably small. However, as the stream length
decreases, the interprocess communication increases, re-
ducing the benefits of multiprocessing. Any spatial de-
composition algorithm must balance these conflicting

297

6 I I ,,I,/, I I I11111 I / 11r11/ I r IllIlk --. *-_
- Sharp Random Rectangles

, -- -_
,

=
u”

- - Sharpthin Random Rectangles *

k! - Proportional Rectangles
LL Fuzzy Random Rectangles ,
-u
s? - - Yanhattan 3 Random Assignment - ”
!Z 4 - - - Unrestricted Random Assignment
e

,*’
+
ti
5
3 a
E s
22-
6 3
&
e
T u

I I I I,!,, I I I11,,, I 0 I ,I,11
10' lo2 lo3 10'

Temperature

P9: 4 Streatns/64 Fries: Mobility at Difjerent Allacations

Figure 3. Cell Mobility vs. Decomposition Method

goals: higher accuracy improves the result, but requires
more time.

Partition shape can influence errors. Figure 2 shows
cost-function errors for different spatial decomposition
methods, while annealing our P9 example with 4 pro-
cessors and a stream length of 64 tries.

shows how average Manhattan distance traveled per cell
varies with different spatial decomposition methods-
again we show the P9 example with 4 processors and 64
tries per stream.

Suppose cells are assigned to partitions at random,
so that a cell’s neighbors are not likely to be within the
same partition. In a circuit where cells tend to have
strong local connectivity (most circuits are like this),
calculations errors are likely to be high. Swaps within
these random partitions would cause dramatic changes
in network length, and those networks would probably
be connected to cells in other partitions. The large cost-
function errors for Random3 and unrestricted random
assignment shown in Figure 2 typify this phenomenon.

Suppose that partitions in a spatial decomposition
scheme always take on a wide, flat shape-as wide as
the entire virtual grid. The non-random spatial decom-
position scheme described in [9] follows this approach.
Cells exhibit high mobility in the horizontal direction,
but low mobility in the vertical direction. A cell can
travel from grid left to grid right in one stream, but it
may take several streams to travel from top to bottom.

The random rectangles approach uses partition shape
to reduce errors and improve mobility over standard
spatial decomposition methods. Recently obtained re-
sults indicate that we are on the right track.

the cells in the region will never leave. To allow cells to
travel any location on the virtual grid, we must periodi-
tally redraw the boundaries. This repartitioning incurs
execution time costs, because individual processes must
copy global state information on the cells in their region
before each stream. As we decrease stream length, we
redraw partition boundaries more often-cell mobility
increases, but the execution speed decreases. Again, we
see a fundamental conflict: higher cell mobility improves
the result, but requires more time.

Partition shape can also affect cell mobility. Figure 3

Cell mobility also competes with execution time.
Suppose, for example, that partition boundaries never
change. Then all swaps will occur within a region, and

2.2 Four Rectangular Approaches

To evaluate this class of parallel simulated annealing
algorithms, we tried four different variations of random
rectangular partitioning, as shown in Figure 4.

2.2.1 Proportional Rectangles

This is the simplest of the four techniques. Here we
divide the layout into equally sized rectangles, roughly
proportional to the overall layout size. We then ran-
domly select the origin for this grid. Note that the
shapes of the rectangles in this group never change.

298

For sharp, minimum width is 2.
For sharpthin. minimum width is 1

System randomly selects horizontal
slice for spare processors.

Sharp and Sharpthin configurations with 8 processors.

Fuzzy (edges are 2 1 from sharp) Proportional (only origin moves)

Figure 4. Rectangular Decomposition Schemes

2.2.2 Sharp Random Rectangles

This algorithm divides grid g into rectangles with a
minimum width and height of 2. First, we choose
the number of rectangles in the X direction. Let, wg
be the grid width, and h, be the grid height. Let
p be the number of processors. We randomly se-
lect the width of each rectangle r from the set 20~ E

{ r2PlkJ 7 . . .,min(p, [wg/21)}. Grid g holds wi =
[zus/w,.J rectangles in the 2 direction. Rectangle height
h, is then h, = b/w;]. Grid g holds hi = [h,/h,J
rectangles in the y direction.

There are two problems. First, it is likely that wr .
wi # wg or h, a hi # h,. To resolve this we widen a
randomly chosen column of rectangles, r,, to wrr. =
wg - w,(w; - 1). We heighten a randomly chosen row,
rhy to h,.,, = h, - h,(h; - 1).

Second, p 5 hi . wi, so with no, modifications we
may not use all processors. To increase the number of
utilized processors to p, we increase the rows in column
r,, to hF* = p-w,f(hi-1). h, .hF* may not equal h,.
In that case, we heighten one row in this single column
r,*, as discussed above.

2.2.3 Sharpthin Random Rectangles

This spatial decomposition algorithm applies the sharp
random rectangles allocation method, except that we
randomly select wp E { [p/h,], , . . , min(p, ws)}. In
sharp random rectangles 20, 1 2 and h, 2 2. Sharpthin
allows wp 2 1 and h, 2 1.

It was thought that rectangles with width or height
1 would significantly increase the calculation error and

reduce the quality of the resulting layout. Empirical
results appear to confirm these initial thoughts.

2.2.4 Fuzzy Random Rectangles

Fuzzy random rectangles also applies the sharp random
rectangles method discussed above, except that cells ly-
ing on rectangle borders are assigned randomly to any
rectangle adjacent to the cell. This creates rectangles
with “fuzzy” borders.

2.2.5 Random3

This is a variation of Jayaraman’s technique [S]. Be-
fore a swap stream, each chip is randomly assigned to a
processor. The chips are divided roughly equally among
the processors and no chip is allocated to more than one
processor each time. When the swap stream completes,
the chips are again redistributed to the processors.

The difference between our implementation and Ja-
yaraman’s is that we disallow exchanges of pairs of chips
whose Manhattan distance exceeds 3-serial algorithms
[7] typically use this restrjction to accelerate the anneal-
ing process.

We tried Jayaraman’s original technique, hoping to
provide some data for comparison, but when the number
of processors exceeded 4, annealing runs using unlimited
Manhattan distance would not converge in a reasonable
time.

299

3 Empirical Results

We ran the random rectangles algorithms in a simu-
lated IBM RP3 environment, using VMjEPEX C [15].
We used the classic VLSI placement cost-function [7],
namely E = L+C2, where E is the cost (energy) of the
system, L is the total wire length of the networks, and
C is the wire congestion.

To evaluate a simulated annealing algorithm, one
must run several trials using different random seeds.
The mean final cost over many trials provides a good
measure of the quality of a particular annealing tech-
nique. For each data point in our results, we ran 50
trials.

At the boundary condition of a single processor, all
spatial decomposition techniques are the same. In the
tables which follow, we simply duplicated the data from
one set of single processor trials in all five categories.
Had we made separate runs, the single processor data
points wouId differ slightly due to the random nature of
the runs.

3.1 The P9 Circuit

Two circuit systems were tried. The first, P9, is a uni-
form 9 x 9 grid with immediate neighbor cells connected
by two-cell nets, There are 81 cells, and 144 nets. It
has a known ground state, under our cost-function, of
E = 144, L = 144 and C = 0. The ground state appears
in Figure 5.

Figure 5. P9 Ground State

We evaluated each of the four rectangular spatial de-
composition techniques with 1, 2,4, and 8 processors. A
fifth set of runs using Random3 provides a baseline from
which we can measure improvement. Table 1 shows the

Jnet

sell

type of partitioning, the number of processors (P), the
number of tries per stream (T/S), the percentage of runs
which reached the ground state cost of 144 (% G), and
our results.

Type
Sharp
Sharp
Sharp
Sharp
Sharpthin
Sharpthin
Sharpthin
Sharpthin
Proportional
Proportiona
Proportional
Proportional
Fuzzy
Fuzzy
Fuzzy
Fuzzy

Random3
Random3
Random3
Random3

Table

F
i-
2
4
8

i-
2
4
8

i-
2
4
8

‘I-
2
4

8
=
1
2
4

8
=
: I

T/S % G
64 38%
64 27%
64 26%
64 100%
64 38%
64 380/o
64 4OYo
64 20%

64 38Yo
64 72%
64 24%
64 18%
64 38%
64 36%
64 38%
64 15%

8: Convergent
I ce

144.0 0.00
233.32 97.14
236.82 102.61
245.68 106.93
287.92 97.35
233.32 97.14
180.68 60.19
258.66 92.50
316.60 134.22

233.32 97.14
244.72 97.70
254.92 106.96
262.28 91.05

Statistics -I

Note that as the number of processors increases, most
runs show an increasing average cost-function value.
The number of runs which result in the ground state
of E = 144 typically decreases. Random3 shows the
worst degradation as the number of processors increases.
Since Random3 creates the highest calculation errors,
we expected that result.

Finally, one example, Sharp, shows the best result
with 8 processors-all runs reached the ground state.
We would assume this to be anomalistic, however with
an entirely different circuit, described below, Sharp per-
formed better than the other techniques.

3.2 The ZA Circuit

The other problem we tried, called ZA, is a real printed
circuit layout problem. All cells in this problem are
uniformly square. Most of the 359 cells in ZA are un-
connected. There are 50 networks, each with an average
of 4.04 attached cells.

Overall, there are three blocks of interconnected cells.
Two blocks include a few simple 2-cell networks-cell
swaps in those blocks have minor effects on the cost-
function. The third block includes many multiple-cell
networks, typically 9 to 11 cells per net. Each cell
has numerous connections to other cells. One swap in
this group typically causes dramatic changes in the cost

300

function.
There is no known ground state to ZA. We ob-

tained data for the four rectangular spatial decompo-
sition methods, and for the Random3 method. Each of
these partitioning methods were tried with 1, 2, 4, 8,
16, and 32 processors. As with P9, data for the single
processor case is duplicated in all categories. Table 2
shows our results.

Type
Sharp
Sharp
Sharp
Sharp
Sharp
Sharp
Sharpthin
Sharpthin
Sharpthin
Sharpthin
Sharpthin
Sharpthin
Proportional
Proportional
Proportional
Proportional
Proportional
Proportional
Fuzzy
Fuzzy
Fuzzy
Fuzzy
Fuzzy
Fuzzy

Random3
Random3
Random3
Random3
Random3
Random3

Table

P
i-
2
4
8
16
32
i-
2
4
8
16
32
i-
2
4
8
16
32
i-
2
4
8
16
32
Z
1
2
4
8
16
32
E
:Z

T/s
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
iz-
64
64
64
64
64

64
64
64
64
64
64

: co1

Ave E

139.08
138.74
139.58
140.40
141.02
142.02
139.08
138.69
139.26
140.16
141.56
142.50
139.08
139.52
139.46
140.00
140.78
142.54
139.08
139.30
139.28
139.70
140.34
144.48

139.08
139.46
139.34
142.54
150.12
166.30

:rgence

Std E

1.83
1.99
2.22
2.51
2.71
2.53
1.83
1.93
2.49
2.59
2.26
3.05
1.83
2.31
2.31
2.44
2.67
2.99
1.83
2.04
2.06
2.24
2.63
3.82

1.83
2.39
2.15
2.50
3.22
5.93

tatistics

As with the P9 example, in Table 2 we see the best
results in the Sharp partitioning method. F~.zzy looks
very promising until we reach 32 processors. RandomS,

as in the P9 case, produces terrible results when the
number of processors becomes high.

4 Conclusion

We showed that increased mobility and decreased cost-
function errors are important goals in spatial decom-
position methods for simulated a.nnealing. We qualita-
tively described a trade-off where increased parallelism

can decrease cell mobility or increase cost-function er-
rors, resulting in a less desirable annealing result. We
showed that partition shape can affect both cell mobility
and cost-function errors.

We presented four new rectangular spatial decompo-
sition techniques for parallel simulated annealing. Our
rectangular techniques use partition shape to help in-
crease cell mobility and decrease cost-function errors.
This allows us to increase the stream length, provid-
ing greater parallelism and decreasing execution time
on multiprocessors.

One rectangular technique, Sharp Random Rectan-

gles, appears to perform better than the others. The
authors are actively pursuing research in this area, and
expect to develop more quantitative measures for cell
mobility and cost-function errors. We will be running
the algorithms on mesh-connected transputers, conven-
tional LAN-connected workstations, and the shared-
memory RP3 multiprocessor to obtain accurate speed-
up information. We are also investigating the theoreti-
cal implications of error-tolerant parallel simulated an-
nealing on convergence and execution time.

References

[l] Emile H.L. Aarts, Frans M.J. de Bent, Erik H.A.
Habers, and Peter 3.M. van Laarhoven. Paral-
lel implementations of the statistical cooling algo-
rithm. Integration, the VLSI Journal, 4:209-238,

1986.

[2] A. Casotto, F. Romeo, and A. Sangiovanni-
Vincentelli. A parallel simulated annealing algo-
rithm for the placement of macro-cells. In Proceed-
ings of the International Conference on Computer-
Aided Design (ICCAD-BS), page 60, IEEE Com-
puter Society Press, 1986.

[3] D. Chazan and W. Miranker. Chaotic relaxation.
Linear Algebra and Its Applications, 2:199-222,
1969.

[4] Frederica Darema, Scott Kirkpatrick, and Alan V.
Norton. Parallel algorithms for chip placement by
simulated annealing. IBM Journal of Research and
Developm.ent, 31(3):391-402, May 1987.

[5] L.K. Grover. A new simulated annealing algorithm
for standard cell placement. In Proceedings of

the International Conference on Computer-Aided
Design, pages 378-370, IEEE Computer Society
Press, November 1986.

[6] Rajeev Jayaraman and Frederica Darema. Er-
ror tolerance of parallel simulated annealing tech-
niques. In Proceedings of the International Confer-

301

ence on Computer-Aided Design, IEEE Computer
Society Press, 1988.

[7] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vec-
chi. Optimization by simulated annealing. Science,
220(4598):671-680,1983.

[8] Ralph Kling. Novel approaches to cell placement.
September 1988. Presentation of work at IBM T.J.
Watson Research Center.

[9] Ralph-Michael Kling and Prithviraj Banerjee.
Concurrent esp: a placement algorithm for exe-
cution on distributed processors. In Proceedings
of the 1987 International Conference on Computer
Design, pages 354-357, October 1987.

[lo] Saul A. Kravitz and Rob A. Rutenbar. Placement
by simulated annealing on a multiprocessor. IEEE
Transaclions on Computer-Aided Design of Inte-
grated Circuits, CAD-6(4):534-549, July 1987.

[ll] Jimmy Lam, Jean-Marc Delosme, and Carl Sechen.
A new simulated annealing schedule for row-based
placement. In MCNC International Workshop on
Placement and Routing, 1988.

[12] N. Metropolis, A.W. Rosenbluth, M.N. Rosen-
bluth, and A.H. Teller. Equations of state cal-
culations by fast computing machines. Journal of
Chemical Physics, 21:1087-1091, 1953.

[13] Debasis Mitra, Fabio Romeo, and Albert0
Sangiovanni-Vincentelli. Convergence and finite-
time behavior of simulated annealing. In Proceed-
ings of 24th Conference on Decision and Control,
pages 761-767, December 1985.

[14] J .S. Rose, W.M. Snelgrove, and Z.G. Vranesic.
Parallel Standard Cell Placement Algorithms with
Quality Equivalent to Simulated Annealing. Tech-
nical Report, Stanford University, Stanford, CA,
1987.

[15] Chang Whei-Ling and Alan Norton. VM/EPEX C
Preprocessor User’s Manual Version 1.0. Techni-
cal Report RC 12246, IBM T.J.Watson Research
Center, Yorktown Heights, NY, October 1986.

[16] Steve R. White. Concepts of scale in simulated an-
nealing. In Proceedings of the International Con-
ference on Computer Design, page 646, IEEE Com-
puter Society Press, 1984.

302

