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Abstract 

Research on VLSI placement has extended the stan- 
dard sequential simulated annealing technique to two 

multiprocessing variants. In one technique, processors 
perform moves on disjoint partitions of locally-stored 
circuit grids. In the other, processors perform simulta- 
neous moves on a shared grid. Our research explores 
new techni,ques in the first category-called spatial de- 
composition algorithms. 

We describe the impact of cell mobility and cost- 
function errors in parallel simulated annealing. We show 
that changing the partition shape can affect these mea- 
sures, and the quality of the final result. We also show 
a trade-of? execution speed vs. increased cell mobility 
and decreased cost-function errors. 

We present four rectangular decomposition methods. 
Using two circuit examples, we compare their conver- 
gence properties to that of a “standard” random spatial 
decomposition technique. Runs were performed in a 
simulated RP3 environment. 

One method we developed, “sharp random rectan- 
gles,” converged better than the other techniques we 
studied. On one example, sharp random rectangles on 
8 processors converged better than standard sequential 
algorithms. This promising technique allows us to in- 
crease the stream-length, and thereby reduce execution 
time. 

The authors continue their research to better quan- 
tify cell mobility and cost-function errors, and to run 
the rectangular algorithms on other types of multipro- 
cessors to obtain speed-up information. 
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1 Introduction 

Simulated annealing is a class of statistical hill-climbing 
algorithms for solving difficult combinatorial optimiza- 
tion problems, such as VLSI placement or the travel- 
ing salesman problem [‘7]. Simulated annealing gives 
near-optimal results for these problems, but requires a 
substantial investment of computational resources. Re- 
search papers discuss several techniques to reduce total 
execution time, including highly-tuned annealing sched- 
ules [ll] [13] 1161 and parallel processing [2] [4]. 

Most parallel simulated annealing methods use a 
method related to chaotic relaxation [3], in that they 
operate on partially erroneous information. Simulated 
annealing makes hill-climbing moves based on a Monte 
Carlo approach, therefore it can tolerate some error in 
cost-function calculations. Thus, annealing algorithms 
can evaluate the cost of a move using slightly incom- 
plete or out-of-date information, but still converge to a 
reasonable solution. 

Error tolerance provides a great advantage in multi- 
processing: when several processors proceed indepen- 
dently on different parts of the problem, they need not 
synchronously update state information in other proces- 
sors. A processor can save several updates, then send 
them in a block to the other processors. The processor 
will send less control information and compress multi- 
ple moves for a single cell into one move. Thus block 
transmissions reduce total communication traffic. 

With a few limitations, updates can occur out-of- 
order, greatly reducing the number of synchronization 
operations. 

Quantifying the error tolerance of simulated anneal- 
ing is an open theoretical issue. Relying on empirical ev- 
idence, [6] claims that simulated annealing can tolerate 
cost function errors of 10% with limited effect on con- 
vergence. However, those results may strongly depend 
on the partitioning used in [6]-random cell allocation 
with unlimited Manhattan swap-distance. Grover states 
that the largest tolerable error is about half the current 
annealing temperature [5], but clearly this is dependent 
on the cost-function used. Rose claims error reduction 
is extremely important at high-temperatures [14], but 
less important at lower temperatures. 
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1.1 Shared Cell-Map Algorithms 

Two methods of parallel simulated annealing dominate 
the literature: The “shared map” algorithms use a 
shared memory cell map [l] [4] [lo]. Each process ran- 
domly selects two cells for an attempted move, syn- 
chronously locks the cells, calculates the cost-function 
assuming the cells were swapped, and based on the 
Metropolis algorithm [12] either swaps the cells or leaves 
them in place. At the end of the move, the algorithm 
unlocks the cells. Cost-function errors occur when two 
processors simultaneously manipulate cells on the same 
net. 

Some algorithms [4] also lock attached nets before 
swapping-assuring accurate cost-function calculations 
at a greatly increased synchronization cost. Darema [4] 
shows that the increased accuracy of net-locking did not 
make a significant difference in the convergence quality 
on a simulated multiprocessor system. 

1.2 Spatial Decomposition 

The “spatial decomposition” algorithms divide the a 
cell map into mutually disjoint partitions, either ran- 
domly [2] [6] or using a fixed pattern [8] [9], and assign 
each partition to a different processor. A processor ran- 
domly selects two cells within its partition, calculates 
the cost-function assuming the cells were swapped, and 
uses the Metropolis algorithm to decide whether to swap 
the cells. No locking is required in these algorithms, be- 

cause the processors operate on disjoint sets of cells. 
A processor may complete several swaps, in a “swap 
stream,” before sending the updated information to a 
common database. 

Each processor acts independently on its partition, 
assuming that cells in other partitions are stationary. 
Cost-function errors result because cells in other par- 
titions are not stationary-they are being modified by 
different processors. After a number of tries, the pro- 
cesses update a global map, the controlling task repar- 
titions the grid, and the process repeats. The reader 
can see that using a larger swap stream (allowing more 
swaps between updates) will increase calculation errors. 
Note that any successful algorithm must change parti- 
tion boundaries between streams, otherwise limitations 
on cell-mobility will preclude a good result. 

1.3 Our Work 

Our research explores four new “random rectangles” 
spatial decomposition schemes. Our approach divides 
a virtual circuit grid into rectangular regions-the al- 
gorithms differ in the restrictions placed on where the 
boundaries can fall. One method, “sharp random rect- 
angles” converges better than the others we studied. For 
certain examples the resulting layout quality of sharp 
random rectangles was higher than standard sequential 
approaches! 

We show that our results can be reasonably inter- 
preted in terms of the increased cell-mobility and de- 
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Figure 2. Cost Function Errors vs. Decomposition Method 

creased cost-function errors that occur with the rectan- processes move their cells around. 
gular partitioning approaches. 

2 The Algorithm 

Our spatial decomposition algorithm first assigns the 
cells in a VLSI circuit to random locations on a virtual 
grid. 

Figure 1 shows the parallel execution model. It begins 
with a single processor decomposing the grid into mu- 
tually disjoint partitions-in our case these partitions 
are rectangular regions from the virtual grid. For com- 
parison purposes, we can also generate random regions, 
where each cell is assigned to a random processor. These 
partitioning algorithms will be described in detail later. 

All processes then proceed independently to complete 
a “stream” of trial moves on their respective regions. 
Each process copies the entire cell map to its local 
memory-we optimize this step by copying only changed 
cells to the local memory. 

A process randomly chooses two cells within its re- 
gion. If the two cells have Manhattan distance greater 
than 3, the process repeatedly retries, randomly select- 
ing another two cells until it finds two at Manhattan 
distance less than 4. 

It then calculates the cost function based on its local 
copy of the cell map. While cells within the partition 
accurately reflect their present position, cell positions 
outside the partition will become outdated when other 

Using the estimated change in the cost-function for 
the circuit layout in the Metropolis algorithm, the pro- 
cess may swap the two selected cells. If the cells are 
swapped, the local cell map is changed, but copies of 
the cell map in other processors are nol updated. 

Finally, if the number of tries equals the “stream 
length,” the process relinquishes control back to the su- 
pervisor process. Otherwise, it again randomly selects 
two cells, as above, and the sequence repeats. 

When all processes have completed their streams, the 
supervisory process creates an accurate shared copy of 
the cell map, reflecting changes made in individual pro- 
cessors. It determines whether the annealing schedule 
is complete. If not, it changes the annealing constraints 
according to the schedule, re-establishes the partitions, 
and restarts the parallel processes. 

2.1 Speed vs. Accuracy and Mobility 

When a process moves chips within its region, the global 
states viewed by the other processes become inconsis- 
tent. This introduces a computation error which, un- 
controlled, would destroy the quality of the resulting 
layout. 

To minimize these errors, the stream length must be 
kept reasonably small. However, as the stream length 
decreases, the interprocess communication increases, re- 
ducing the benefits of multiprocessing. Any spatial de- 
composition algorithm must balance these conflicting 
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Figure 3. Cell Mobility vs. Decomposition Method 

goals: higher accuracy improves the result, but requires 
more time. 

Partition shape can influence errors. Figure 2 shows 
cost-function errors for different spatial decomposition 
methods, while annealing our P9 example with 4 pro- 
cessors and a stream length of 64 tries. 

shows how average Manhattan distance traveled per cell 
varies with different spatial decomposition methods- 
again we show the P9 example with 4 processors and 64 
tries per stream. 

Suppose cells are assigned to partitions at random, 
so that a cell’s neighbors are not likely to be within the 
same partition. In a circuit where cells tend to have 
strong local connectivity (most circuits are like this), 
calculations errors are likely to be high. Swaps within 
these random partitions would cause dramatic changes 
in network length, and those networks would probably 
be connected to cells in other partitions. The large cost- 
function errors for Random3 and unrestricted random 
assignment shown in Figure 2 typify this phenomenon. 

Suppose that partitions in a spatial decomposition 
scheme always take on a wide, flat shape-as wide as 
the entire virtual grid. The non-random spatial decom- 
position scheme described in [9] follows this approach. 
Cells exhibit high mobility in the horizontal direction, 
but low mobility in the vertical direction. A cell can 
travel from grid left to grid right in one stream, but it 
may take several streams to travel from top to bottom. 

The random rectangles approach uses partition shape 
to reduce errors and improve mobility over standard 
spatial decomposition methods. Recently obtained re- 
sults indicate that we are on the right track. 

the cells in the region will never leave. To allow cells to 
travel any location on the virtual grid, we must periodi- 
tally redraw the boundaries. This repartitioning incurs 
execution time costs, because individual processes must 
copy global state information on the cells in their region 
before each stream. As we decrease stream length, we 
redraw partition boundaries more often-cell mobility 
increases, but the execution speed decreases. Again, we 
see a fundamental conflict: higher cell mobility improves 
the result, but requires more time. 

Partition shape can also affect cell mobility. Figure 3 

Cell mobility also competes with execution time. 
Suppose, for example, that partition boundaries never 
change. Then all swaps will occur within a region, and 

2.2 Four Rectangular Approaches 

To evaluate this class of parallel simulated annealing 
algorithms, we tried four different variations of random 
rectangular partitioning, as shown in Figure 4. 

2.2.1 Proportional Rectangles 

This is the simplest of the four techniques. Here we 
divide the layout into equally sized rectangles, roughly 
proportional to the overall layout size. We then ran- 
domly select the origin for this grid. Note that the 
shapes of the rectangles in this group never change. 
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Figure 4. Rectangular Decomposition Schemes 

2.2.2 Sharp Random Rectangles 

This algorithm divides grid g into rectangles with a 
minimum width and height of 2. First, we choose 
the number of rectangles in the X direction. Let, wg 
be the grid width, and h, be the grid height. Let 
p be the number of processors. We randomly se- 
lect the width of each rectangle r from the set 20~ E 

{ r2PlkJ 7 . . .,min(p, [wg/21)}. Grid g holds wi = 
[zus/w,.J rectangles in the 2 direction. Rectangle height 
h, is then h, = b/w;]. Grid g holds hi = [h,/h,J 
rectangles in the y direction. 

There are two problems. First, it is likely that wr . 
wi # wg or h, a hi # h,. To resolve this we widen a 
randomly chosen column of rectangles, r,, to wrr. = 
wg - w,(w; - 1). We heighten a randomly chosen row, 
rhy to h,.,, = h, - h,(h; - 1). 

Second, p 5 hi . wi, so with no, modifications we 
may not use all processors. To increase the number of 
utilized processors to p, we increase the rows in column 
r,, to hF* = p-w,f(hi-1). h, .hF* may not equal h,. 
In that case, we heighten one row in this single column 
r,*, as discussed above. 

2.2.3 Sharpthin Random Rectangles 

This spatial decomposition algorithm applies the sharp 
random rectangles allocation method, except that we 
randomly select wp E { [p/h,], , . . , min(p, ws)}. In 
sharp random rectangles 20, 1 2 and h, 2 2. Sharpthin 
allows wp 2 1 and h, 2 1. 

It was thought that rectangles with width or height 
1 would significantly increase the calculation error and 

reduce the quality of the resulting layout. Empirical 
results appear to confirm these initial thoughts. 

2.2.4 Fuzzy Random Rectangles 

Fuzzy random rectangles also applies the sharp random 
rectangles method discussed above, except that cells ly- 
ing on rectangle borders are assigned randomly to any 
rectangle adjacent to the cell. This creates rectangles 
with “fuzzy” borders. 

2.2.5 Random3 

This is a variation of Jayaraman’s technique [S]. Be- 
fore a swap stream, each chip is randomly assigned to a 
processor. The chips are divided roughly equally among 
the processors and no chip is allocated to more than one 
processor each time. When the swap stream completes, 
the chips are again redistributed to the processors. 

The difference between our implementation and Ja- 
yaraman’s is that we disallow exchanges of pairs of chips 
whose Manhattan distance exceeds 3-serial algorithms 
[7] typically use this restrjction to accelerate the anneal- 
ing process. 

We tried Jayaraman’s original technique, hoping to 
provide some data for comparison, but when the number 
of processors exceeded 4, annealing runs using unlimited 
Manhattan distance would not converge in a reasonable 
time. 
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3 Empirical Results 

We ran the random rectangles algorithms in a simu- 
lated IBM RP3 environment, using VMjEPEX C [15]. 
We used the classic VLSI placement cost-function [7], 
namely E = L+C2, where E is the cost (energy) of the 
system, L is the total wire length of the networks, and 
C is the wire congestion. 

To evaluate a simulated annealing algorithm, one 
must run several trials using different random seeds. 
The mean final cost over many trials provides a good 
measure of the quality of a particular annealing tech- 
nique. For each data point in our results, we ran 50 
trials. 

At the boundary condition of a single processor, all 
spatial decomposition techniques are the same. In the 
tables which follow, we simply duplicated the data from 
one set of single processor trials in all five categories. 
Had we made separate runs, the single processor data 
points wouId differ slightly due to the random nature of 
the runs. 

3.1 The P9 Circuit 

Two circuit systems were tried. The first, P9, is a uni- 
form 9 x 9 grid with immediate neighbor cells connected 
by two-cell nets, There are 81 cells, and 144 nets. It 
has a known ground state, under our cost-function, of 
E = 144, L = 144 and C = 0. The ground state appears 
in Figure 5. 

Figure 5. P9 Ground State 

We evaluated each of the four rectangular spatial de- 
composition techniques with 1, 2,4, and 8 processors. A 
fifth set of runs using Random3 provides a baseline from 
which we can measure improvement. Table 1 shows the 
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type of partitioning, the number of processors (P), the 
number of tries per stream (T/S), the percentage of runs 
which reached the ground state cost of 144 (% G), and 
our results. 

Type 
Sharp 
Sharp 
Sharp 
Sharp 
Sharpthin 
Sharpthin 
Sharpthin 
Sharpthin 
Proportional 
Proportiona 
Proportional 
Proportional 
Fuzzy 
Fuzzy 
Fuzzy 
Fuzzy 

Random3 
Random3 
Random3 
Random3 

Table 

F 
i- 
2 
4 
8 

i- 
2 
4 
8 

i- 
2 
4 
8 

‘I- 
2 
4 

8 
= 
1 
2 
4 

8 
= 
: I 

T/S % G 
64 38% 
64 27% 
64 26% 
64 100% 
64 38% 
64 380/o 
64 4OYo 
64 20% 

64 38Yo 
64 72% 
64 24% 
64 18% 
64 38% 
64 36% 
64 38% 
64 15% 

8: Convergent 
I ce 

144.0 0.00 
233.32 97.14 
236.82 102.61 
245.68 106.93 
287.92 97.35 
233.32 97.14 
180.68 60.19 
258.66 92.50 
316.60 134.22 

233.32 97.14 
244.72 97.70 
254.92 106.96 
262.28 91.05 

Statistics -I 

Note that as the number of processors increases, most 
runs show an increasing average cost-function value. 
The number of runs which result in the ground state 
of E = 144 typically decreases. Random3 shows the 
worst degradation as the number of processors increases. 
Since Random3 creates the highest calculation errors, 
we expected that result. 

Finally, one example, Sharp, shows the best result 
with 8 processors-all runs reached the ground state. 
We would assume this to be anomalistic, however with 
an entirely different circuit, described below, Sharp per- 
formed better than the other techniques. 

3.2 The ZA Circuit 

The other problem we tried, called ZA, is a real printed 
circuit layout problem. All cells in this problem are 
uniformly square. Most of the 359 cells in ZA are un- 
connected. There are 50 networks, each with an average 
of 4.04 attached cells. 

Overall, there are three blocks of interconnected cells. 
Two blocks include a few simple 2-cell networks-cell 
swaps in those blocks have minor effects on the cost- 
function. The third block includes many multiple-cell 
networks, typically 9 to 11 cells per net. Each cell 
has numerous connections to other cells. One swap in 
this group typically causes dramatic changes in the cost 
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function. 
There is no known ground state to ZA. We ob- 

tained data for the four rectangular spatial decompo- 
sition methods, and for the Random3 method. Each of 
these partitioning methods were tried with 1, 2, 4, 8, 
16, and 32 processors. As with P9, data for the single 
processor case is duplicated in all categories. Table 2 
shows our results. 

Type 
Sharp 
Sharp 
Sharp 
Sharp 
Sharp 
Sharp 
Sharpthin 
Sharpthin 
Sharpthin 
Sharpthin 
Sharpthin 
Sharpthin 
Proportional 
Proportional 
Proportional 
Proportional 
Proportional 
Proportional 
Fuzzy 
Fuzzy 
Fuzzy 
Fuzzy 
Fuzzy 
Fuzzy 

Random3 
Random3 
Random3 
Random3 
Random3 
Random3 

Table 

P 
i- 
2 
4 
8 
16 
32 
i- 
2 
4 
8 
16 
32 
i- 
2 
4 
8 
16 
32 
i- 
2 
4 
8 
16 
32 
Z 
1 
2 
4 
8 
16 
32 
E 
:Z 

T/s 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
iz- 
64 
64 
64 
64 
64 

64 
64 
64 
64 
64 
64 

: co1 

Ave E 

139.08 
138.74 
139.58 
140.40 
141.02 
142.02 
139.08 
138.69 
139.26 
140.16 
141.56 
142.50 
139.08 
139.52 
139.46 
140.00 
140.78 
142.54 
139.08 
139.30 
139.28 
139.70 
140.34 
144.48 

139.08 
139.46 
139.34 
142.54 
150.12 
166.30 

:rgence 

Std E 

1.83 
1.99 
2.22 
2.51 
2.71 
2.53 
1.83 
1.93 
2.49 
2.59 
2.26 
3.05 
1.83 
2.31 
2.31 
2.44 
2.67 
2.99 
1.83 
2.04 
2.06 
2.24 
2.63 
3.82 

1.83 
2.39 
2.15 
2.50 
3.22 
5.93 

tatistics 

As with the P9 example, in Table 2 we see the best 
results in the Sharp partitioning method. F~.zzy looks 
very promising until we reach 32 processors. RandomS, 

as in the P9 case, produces terrible results when the 
number of processors becomes high. 

4 Conclusion 

We showed that increased mobility and decreased cost- 
function errors are important goals in spatial decom- 
position methods for simulated a.nnealing. We qualita- 
tively described a trade-off where increased parallelism 

can decrease cell mobility or increase cost-function er- 
rors, resulting in a less desirable annealing result. We 
showed that partition shape can affect both cell mobility 
and cost-function errors. 

We presented four new rectangular spatial decompo- 
sition techniques for parallel simulated annealing. Our 
rectangular techniques use partition shape to help in- 
crease cell mobility and decrease cost-function errors. 
This allows us to increase the stream length, provid- 
ing greater parallelism and decreasing execution time 
on multiprocessors. 

One rectangular technique, Sharp Random Rectan- 

gles, appears to perform better than the others. The 
authors are actively pursuing research in this area, and 
expect to develop more quantitative measures for cell 
mobility and cost-function errors. We will be running 
the algorithms on mesh-connected transputers, conven- 
tional LAN-connected workstations, and the shared- 
memory RP3 multiprocessor to obtain accurate speed- 
up information. We are also investigating the theoreti- 
cal implications of error-tolerant parallel simulated an- 
nealing on convergence and execution time. 
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