
Software Components - A Scalable Solution to Platform Independent
Software Development for Commercial Applications

Douglas E. Donzelli and Dan R. Greening

Software Transformation, Inc.
1601 Saratoga-Sunnyvale Rd, Suite 100

Cupertino, CA 95014
(408) 973-8081

Abstract

The Universal Component System™ (UCS) is a platform-independent application
development system targeted for large-scale, commercial applications. UCS runs on several
platforms, including Microsoft Windows, Macintosh, Unix/Motif, and Open-Look. UCS
addresses three major aspects of application portability: user interface, system services, and
connectivity. UCS uniquely addresses traditional functionality-performance design tradeoffs
by providing an architecture scalable to application developers' needs.

This paper describes the design philosophy of UCS, and contrasts it with other
approaches. We highlight several unique aspects of the system, illustrating how our goals
influenced the design of specific UCS components. Based on our experiences using UCS to
develop and port software under contract, we believe the approach will be extremely useful for
original software developers, as well as for those porting existing software.

Introduction

Several common software platforms provide
graphical user interface facilities: Microsoft
Windows, OS/2, Macintosh, Motif, Open-Look,
Next, etc. Each platform has technical
idiosyncrasies, strengths, and weaknesses, e.g.,
Windows and Macintosh provide no timesharing,
Motif has oddly-constructed keyboard traversal
mechanisms and provides no graphical printing
facilities. Each platform has a different user profile,
with different pricing expectations, graphical needs,
and installed base.

Application designers have faced a choice:
develop their application for a single platform, or
use a portability toolkit to mask differences between
the platforms. Unfortunately, most portability
toolkits provide limited functionality or focus solely
on user interface services. The Universal
Component System™, a commercial product
developed by Software Transformation, Inc. (STI),
addresses three aspects of application development:
operating system services, user interface
management, and connectivity. As a result, UCS
developers can use a broad range of features
including platform-independent dynamic linking,

475
0-8186-2655-0192 $3.00 e 1992 IEEE

printing, rich text editing, and object embedding. As
opposed to other solutions based solelv on
abstraction and augmentation techniques, UCS's
scalable approach resolves tradeoffs between
functionality and performance by enabling
developers to configure UCS to their needs.

This paper describes five design principles
embodied in UCS and then examines how these
principles influenced some particular design areas:

• Functionality-performance tradeoffs
• Messages
• Menubars
• Extensible visual objects
• Dynamic Linking
• Resources

Design Goals

UCS tries to maximize five qualities: efficiency,
functionality, portability, modularity and
extensibility.

Efficiency

Strive for maximum efficiency.

Applications based on portable techniques must
be indistinguishable from their natively-built
competitors.

Functionality

Add capabilities to each platform where they lack
functionality.

Constraining functionality to what is available
on all platforms provides limited advantage to using
a portability tool. Adding functions to individual
platforms generated much design and
implementation work for us-work the application
writer avoids by using UCS.

Portability

Three portability goals drive UCS: Enable the user
to write a complete application without using the
native system, track attributes of new native releases,
and retain native look-and-feel.

A complete solution to portability dramatically
decreases the cost of developing and maintaining an
application. The application writer need not
understand and code separately for each platform.
Development, testing, and repair all become easier.

Using higher-level native interfaces allows the
application to grow naturally with new releases and
variants of the underlying platform. Furthermore,
an application written partially to UCS and partially
to the native interface can use higher-level native
objects.

Modularity

UCS has two modularity goals: Allow the developer
to select only those components that the application
needs, and to tailor individual components to the
application's requirements.

Modularity distinguishes UCS from other
solutions. While a single all-encompassing
component can satisfy the requirements of most
applications, unneeded functionality can degrade
efficiency and increase program size. With different
versions of a component, the developer can decide
how to balance functionality and efficiency for
herself.

Extensibility

Allow the application writer to freely mix native
subroutine calls with portable system calls

476

Extensibility provides three advantages: An
existing program can incorporate additional
functionality supplied by UCS without rewriting the
whole application. An application can take
advantage of proprietary platform-specific
technology, such as a special font engine. An
implementation can provide platform-specific
functionality or greater efficiency on platforms that
support it.

Design Areas

In this section we describe some unique aspects
of UCS, and point out how our design philosophy
influenced the result.

Functionality/Performance Tradeoffs

The real challenge of any portable development
system is to enable a developer to produce an
application as efficient and feature-rich as one
written natively. To accomplish this, the system
must enable developers to use the same design
process they follow when crafting an application
natively:

1. A developer utilizes services provided by the
native operating system when they meet the
functional and performance needs of the target
application.

2. When services are inadequate, the developer
bypasses the system and implements missing
capabilities using lower-level facilities of the
system.

Traditional libraries, class systems, and
portability abstractions cannot exactly match the
performance and functionality required by a
particular application, because libraries must
provide a generic system usable by many
applications. A single, generic library can't meet the
specific needs of all applications. This is
demonstrated by examining the
performance/ functionality tradeoff involved in text
editing. Below are three example applications and
the text-editing features they require:

Features App 1 App2 App3
of lines in view multiple multiple multiple
scrollable view yes yes yes
cut /copy /paste yes yes yes
of fonts in view single multiple multiple
graphics no no no
of characters < 32767 < 32767 > 32767

Figure 1 : Sample text editing requirements

The developer must analyze the text-editing
services provided by each of the native operating
systems:

Mac MSW x
Features TextEdit Edit Widget

of lines in view multiple multiple multiple
scrollable view yes yes yes
cut/copy/paste yes yes yes
of fonts in view multiple single single
graphics no no no
of characters < 32767 < 32767 > 32767

Figure 2: Platform text editing capabilities

Application One can use standard text-editing
services on all platforms. Application Two can use
native Macintosh TextEdit. Application Three
cannot use standard services on any platform
because of multiple fonts and memory limitations.

A traditional library or abstraction cannot satisfy
all requirements. The developers of Application One
can use the native text-editing services on all
platforms. However, a library built on this basis
would be unusable by Application Two and Three.
To build a single text-edit library usable by
Application Three, on the other hand, a library
would have to replace native services on every
platform. This diverges from the developer's desire
to use native, minimalist facilities where appropriate.

Replacing native services to satisfy the
functional requirements of a minority of applications
leads to problems. First, the majority would have to
be replaced, even native implementations of Push
Buttons. More importantly, application performance
would decline, due to unnecessary library
complexity and inefficiency. Each replacement also
results in decreased compatibility as native systems
change in appearance and functionality .

UCS offers a more efficient implementation for
applications because components have multiple
implementations based on native operating system
capabilities and application requirements. The

477

developer can configure a UCS software component
to the specific requirements of the application. In the
case of text-editing, UCS offers more than six
possible implementation choices varying in
complexity. Configurability, often referred to as
scalability, enables UCS to provide a diverse range of
features, each at an optimal level of performance.
This approach gives UCS a unique advantage over
other traditional reusability, abstraction, and
augmentation techniques.

UCS divides native services into software
component families. Families consist of different
components scaled to meet specific requirements.
This core component of each family is the most
efficient implementation of the most basic features.
Each additional implementation of a family is called
an extension. For example, the extension of Edit Text
that supports multiple fonts in a view is called the
'Edit Text MultiFont Extension.' Some UCS families
provide more than a dozen extensions, such as
Graphics, and other require none at all, such as
Keyboard.

No matter how many extensions a family may
contain, all must support the same upwardly-
compatible APL This is necessary for many reasons.
First, a common family API enables the developer to
easily change components as her product evolves.
Second, developers will want to configure
applications differently on different platforms, and
in some cases, on different incarnations of the same
platform. For example, developers may want to run
with the Memory Swapping extension on platforms
that do not support virtual memory natively, but
without this extension on platforms that do. Third, a
common family API enables developers to produce
different application modules that share the same
component configuration at run-time.

Messages

Due to the modeless nature of many system
services, most development platforms, including
UCS, provide a message system. Several issues
motivate this approach:

1. Applications and interface objects must deal
with events asynchronously; a message system
ideally satisfies such requirements.

2. Multiple clients can send and receive messages
from a single instantiation of a system service;
this allows for service sharing between
applications [Grec90].

3. Messages provide a straightforward method of
interprocess communication.

4. Messages are easily mapped into methods
defined by object-oriented classes.

UCS divides messages into two categories:
requests and notifications. An application requests an
operation by sending a message; UCS notifies an
application when a component completes an
operation on its behalf. Operations performed in
response to messages are called default behaviors. For
example, an application inserts a string into a list by
sending a message. The list performs its default
behavior by inserting the item and repainting as
necessary. Upon completion, the list returns a
message:

Request

ｾ＠D
('Insert this Item')

Nottflcaflon

Apptication ('Item Inserted') Component

Figure 3: Requests and notifications

Components send notifications to developer-
specified callback routines. UCS also provides an
extension that enables developers to install multiple
callback routines per object. This approach has been
referred to as the multiple listener model [Grec90]. To
provide further flexibility, developers can intercept
messages before and after default processing. This
mechanism, called filtering, enables developers to
replace or modify a component's default behavior:

Request

Pr&-fllter

Modify,

11 Conttrue. or
Abort? ..

... Post-filter I '

•

Appllcallon Component

Figure 4: Pre- and post-filters

Unnecessary message traffic can cause severe
performance problems. For example, some native
systems notify the application of every keystroke in a
text field, whether the application requires such
information or not [WinRef91]. UCS eliminates
unnecessary message flow by sending messages only
when specifically authorized for a given message.

478

The developer authorizes notifications by associating
a filter bitmask with each interface object:

'01 MSG INIT
0 MSG IERM

0 MSG_CREATE

0 MSG_DESTIIOY

D
1 ｾｍｓｇ｟ｓｈｏｗ＠

0 MSG_HIDE !-'---
-- 1 MSG_DRAW

0 MSG SBECT

0 ll_MSG MOVE Appllcalon
Component

Figure 5: Notification Authorization

UCS always builds its messaging abstraction
upon native message services, thus enabling
developers to communicate with other executing
native processes. Since UCS messages use the native
system, developers can incrementally migrate their
applications to UCS.

Comparisons

Most native systems limit notifications to a
single user-installed callback [WinRef90],
[MacRef90J. Most portability solutions limit access
to the underlying message system and/or constrain
notifications to a limited set of messages [Roch91].

Menu bars

Application menubars in three common
platforms, Windows, Macintosh, and Xll/Motif,
exhibit significant differences, as illustrated in Figure
6.

:"!:- Edi

Mac Into eh

-l ｾ＠

ｉｅｬ･ｾ＠ HM>

[bJ
CUA-MDI Window•

Figure 6: Menubars on three platforms.

There are only two user-interface menubar styles
as far as the programmer is concerned: single
menubar and multiple menubar. Microsoft

Windows allows either style, but typical Windows
application use the single menubar style. Motif also
allows both styles, but typical Motif applications use
the multiple menubar style. Macintosh supports
only the single menubar style.

The application writer wants to write a single,
portable application which adopts the native look-
and-feel. If there is a single menubar, she wants to
modify it to correspond with the currently active
top-level window. If there are multiple menubars,
she wants to have each menubar look different. To
accommodate the expectations of our users, we
accommodate both styles in a uniform, application-
transparent way.

A single "shared menubar" is associated with
each UCS application. This shared menubar
contains cascade-menu buttons to be included on all
top-level windows. The shared menubar never
physically appears on the screen. Each top-level
window has a "local menubar," which can appear on
the screen.

When a top-level window is activated, i.e., when
one of its sub-windows acquires keyboard focus, the
top-level window inherits the contents of the shared
menu bar.

Ale Edit Help

L..-

Figure 7: Single menubar style.

In the single-menubar model, shown in Figure 7,
the application has access to only one visible
menubar on the screen, regardless of the number of
top-level windows. When a window gains control of
the menubar-typically by becoming active, gaining
keyboard focus or rising to the foreground-it can
add window-specific cascade-menus to the menubar,
or add items to individual cascades. When the
window loses control of the menubar, it is required
to remove any window-specific items that it added.
UCS sends "menubar gained" and "menubar lost"
messages to the window whenever its control of the
menubar changes.

479

flle fdt Help
Uelpl flle .Edit

l
flle fdt H•

L..-

Figure 8: Multiple menu bar style.

In the multiple-menubar style, shown in Figure
8, each window has an independent, visible
menubar. When a window is created, UCS clones
the window's local menubar from the shared
menubar. UCS sends a "menubar gained" message
to the window, then makes the local menubar
visible. If the application never changes the shared
menubar, the window instance will never receive a
"menubar lost" message.

Uniform Menubars

A programmer with simple requirements should
be able to write the program simply. If all menubars
are identical, implementation is trivial; the
application sets the contents of the shared menubar,
and creates the windows (which can turn off
menubar gained and lost messages).

Window-Specific Menubar Changes

The programmer can add or delete cascade-
buttons on the shared menubar anytime, if the
application follows a standard protocol; it first
withdraws control of the menubar(s) from all
window instances by calling UMenuGetMenubar.
UCS sends a menubar lost message to all windows
that have control of their local menubar. If the
window has made local changes to the menubar, it
removes them.

When UMenuGetMenubar returns, the program
modifies the contents of the shared menubar. It
returns control to the window(s) by calling
UMenuReleaseMenubar. At this point, UCS sends a
menubar gained message to each window that lost
control when UMenuGetMenubar was called.

Some thoughts worth pondering: On a single-
menubar platform, at most one window has gained
control of its local menubar; on a multiple-menubar
platform, either all windows have gained control
over their local menubars or none have. The
implementation can be made very efficient. Since a

window must remove its changes whenever it loses
control, on single menubar systems UCS creates only
the shared menubar ID; it is also the local menubar
ID! On multiple menubar systems, if the shared
menubar is never changed (the common case),
overhead for cloning the menubar only occurs when
windows are created.

Cascade-Menu Changes

UCS supports shared cascade-menus, providing
two principle advantages: the UCS system can
efficiently clone menubars, and UCS applications can
easily invoke the same cascade in different contexts.

Because application writers often want to
modify only a portion of a pull-down menu (for
example, a File cascade), UCS provides a convenient
mechanism for modifying the contents of a menu-
cascade immediately before it is invoked. Selecting a
cascade on a menubar causes UCS to send a
"menubar activated" message to the application. It
may then add or delete individual cascades to
correspond to the present context.

For even finer control, UCS provides an
extension that notifies individual cascade menus
immediately before they are invoked. Because this
involves significant overhead on some platforms, we
provide it as a UCS extension.

Comparisons

In summary, the UCS application writer can use
any of three techniques to customize menubars for
top-level windows:

1. Set the local menubar contents whenever a
window receives a menubar gained message.
Restore the local menubar contents whenever a
window receives a menubar-gained message.

2. If each window's menubar looks exactly the
same, but the contents of the cascade menus are
different, modify the contents of the menu
cascades whenever the application receives a
menubar activate message.

3. If the Cascade Notify Extension is installed,
modify individual cascades whenever they
receive cascade-menu activate messages.

One internal portability toolkit adopted a fourth
approach for menubars [Nich91]. The menubar has
two components: a shared component and a local
component. Under the single-menubar style,
whenever a window is activated, the a new menu bar
is constructed by concatenating the shared
component and the window's local component.

480

Under the multiple-menubar style every window
includes a menubar concatenating the shared
component and its local menubar component.

UCS does not use that model because it was not
a complete solution. It does not allow local menubar
variations to be inserted, for example. The UCS
approach, which appears to be unique, subsumes
that approach as well as several others [Hayh91].

Extensible Visual Objects

A survey of commercial products demonstrates
that developers require a wide variety of interface
support facilities:

./Plain Te HI
Bold
llalir

MSW
N£WCUST
BUSINCSS
!)!I

Ii# Address

ｾ＠ Rh1rm CIOLk

ｾ＠ Battery

llifil Cnlculalor

ｾｃｄ＠ Control

Figure 9: Common interface extensions

Commercial products combine text, pixmaps,
colors, and multimedia images within standard
interface objects. Other products enhance traditional
interface objects with non-traditional input
characteristics, keyboard equivalents, and macros.
Few native systems support these techniques
directly. Since competitive applications require
powerful and unique user interfaces, development
systems must meet a strict set of requirements:

1. To guarantee commercial acceptance by users
and platform providers, user interfaces must
conform to strict platform guidelines. Users
should not be able to distinguish a native
interface from one produced portably.

2. To ensure maximum performance and
compatibility with platform revisions, portability
solutions must use and extend native interface
facilities.

3. To allow for product innovation, interface
facilities must provide extensibility to new input
mechanisms, display images, and other
customizations.

UCS divides interface facilities into controls and
items. Lists, buttons, tables, and menus are
examples of controls. Text, bitmaps, and colors are
examples of items. The developer is free to combine

any type of item with any control. As a result, text
lists, bitmap lists, and combinations thereof can be
manipulated with equal ease. Likewise, all controls
display pixmaps and text without requiring
developer modifications. Based on the variety found
in commercial applications, UCS provides
components for all native controls and more than
seven types of items.

Rddress

"" ""Address

("" Rddr-es s)

.. '
.,, ｾｒ､､ｲ･ｳｳ＠

""Address
ｾ＠ Alarm [lock

B Battery

ｾ＠ Rlarm Clock

B Battery

Figure 10: Items and controls

Controls define and manage the selection
characteristics, layout, scrolling, and updating of a
user interface object. Items manage the painting,
storage, mnemonic selection, and other operations
specific to an item's data type. Controls and items
behave according to a master-slave relationship,
where the control is always in charge and the item
responds to requests on a control's behalf. Since the
control-item API is externally defined, developers
can freely create new item types and combine them
with any existing control. Likewise, the developer
can easily create a new control type for use with
existing item types. This greatly reduces the
complexity of enhancing existing interface
management systems.

The developer specifies a control type and item
type when an object is first created. UCS maps this
request into the most efficient native
implementation. For example, a text list request
results in a standard Macintosh List or Windows
ListBox, while a bitmap list request results in an
LDEF-based list or 'owner-draw' ListBox. This
technique avoids unnecessary messaging, sub-
classing, or use of non-standard control definition
procedures.

The developer manipulates a control
independent of the item type it contains. For
example, item selection, deletion, and addition use
the same message types and message-specific data
whether the control contains a pixmap or a text
string. As a result, the developer can easily modify
an interface object from a list to a menu or from a list
of strings to a list of strings and bitmaps.

Because of the control-item separation, an item
can optimize data storage based on a control's needs.

481

For example, list items can be stored in heaps on one
platform, zones on another, or linked lists on a third.
In addition, developers can define application-
specific storage methods, a feature which is
commonly required by applications that store large
quantities of data. This mechanism avoids the
memory overhead of interface objects that store
copies of data or data reference values. Items can
also be used to define references to OLE or Edition
Manager objects.

Dynamic and Run-Time Libraries

When one binds an application to subroutine
libraries, one commonly expects code from the
libraries to be merged with the application and
written to the executable file. This operation is
called "static linking." If the libraries can only be
statically bound to applications, they are "static
libraries."

In some operating systems, code from
subroutine libraries can be omitted from the
compiled program. When the system invokes an
application, it finds and loads the library files, loads
the executable file, resolves external references, and
begins execution. This process is called "dynamic
loading." Sometimes the operating system can
satisfy several demands for a library with a single in-
memory copy of the library. These libraries, which
create a special case of dynamic loading, are called
"shared libraries."

In some operating systems, an application can
invoke a subroutine from a library file using a run-
time generated string name. Neither the linker nor
the loader binds the external reference; indeed, the
string name could even be typed by the user. Such
libraries are called "run-time libraries," since the
binding of name to address occurs during program
execution.

Dynamic libraries significantly reduce the size of
executable files, particularly when graphics interface
routines are in the shared library. On a Sparcstation,
code from standard XI I libraries can easily consume
80 to 90% of a small Motif application's statically-
linked executable file. Shared libraries reduce the
memory requirements of co-resident programs that
use the same libraries.

Run-time libraries further reduce memory
requirements, particularly when an application user
rarely exercises all the application's features.
Infrequently used features can be relegated to a run-
time library, and invoked only when required.

One might think shared and run-time libraries
would be universal, given their usefulness. They are
not. Only Microsoft Windows supports both
capabilities natively. Even then, using native shared
libraries on Windows is quite painful: static data is
ｾ｣ｴｵ｡ｬｬＡ＠ shared between different library
invocations. Some variants of UNIX support only
shared libraries, some support both shared and run-
ｴｾ･＠ ｬｩｾｲ｡ｲｩｾｳＬ＠ and ｾｯｭ･＠ support only statically-
linked hbranes. Macmtosh supports neither shared
nor run-time libraries.

UCS supplies shared and run-time subroutine
libraries on all platforms. This was one of our most
difficult implementation exercises. Particular
difficulties included writing a dynamic loader for the
Macintosh from scratch, and dealing with a plethora
of executable formats on UNIX.

Nonetheless, we believe that our decision to
ｾｵｰｰｯｲｴ＠ shared and run-time libraries has proved
invaluable. Executable code produced under UCS is
much smaller than code from other portability
systems. We make frequent use of run-time libraries
to reduce the memory requirements of our
applications. This allows us to run applications on
smaller, cheaper, and more common personal
computers, giving UCS applications the widest
possible audience.

Resources: Object Orientation

Resources are data records stored in an
application's executable file, in library modules, or in
ｳ･ｰｾｲ｡ｴ･＠ resource files. Application designers
typically store customization information about the
application's appearance or behavior in resources.
Typical resource values include colors, window
sizes, ｾｩｴｭ｡ＮｰｳＮ＠ UCS provides a facility for specifying
an entire window system hierarchy in resource files.

Changing a value in a resource file does not
require regenerating the executable. This provides a
convenient means for an application designer to
change the appearance and behavior of the program
rapidly, and it allows the user to customize an
application .without having the source code. Using
tools supplied by STI, an application designer can
build the graphical user interface directly on a
screen, and write the corresponding resource values
to a resource file.

The program identifies a resource record by two
numbers: its type-id and its key number. Unlike
some platforms' native behavior, a resource record
cannot be uniquely identified by its key alone.
Programs can register a "type-handler'' for any type-

482

id. This ｨ｡ｮ､ｬｾｲ＠ becomes responsible for loading
resources from files and for performing conversions
to and from UCS "objects" (see below).

A ｾｵｭｾ･ｲ＠ of ｾｴ｡ｮ､｡ｲ､＠ UCS resource types are
ｾｲ･､･ｦｩｮ･､Ｌ＠ including a color type, a bitmap type, an
icon type, etc. Each standard UCS resource type has
a default type-handler pre-installed. The
programmer may override this default type-handler
if desired.

Although user-supplied type-handlers may
support platform-independant data formats, most
UCS standard resources have platform-dependant
data formats, and the resource data must be
converted when moving an application between
platforms. STI supplies tools to convert resources
ｦｲｯｾ＠ one ーｬ｡ｴｾｯｲｭ＠ to another. However, program
designers typically change an application's visual
appearance, through its resources, to match a new
platform's interface style and display capabilities.

. Resource type-handlers form part of an object-
onented system that works seamlessly with other
UCS components. A type-handler controls access
and external representation of objects that have the
appropriate type-id. Code that has a resource object
can convert it, through its type-handler, to the
representation it needs. Other UCS components can
define their own types and type-handlers: the
resource component transparently handles them like
its own.

. ｾ＠ special object class, called a "packet",
facilitates easy exchange between native and UCS
objects. It also allows UCS to cache converted
values. Packets are created from two things: a
resource type-id, and either a native resource value
another UCS component value or a UCS ｲ･ｳｯｵｲ｣ｾ＠
component value. A 32-bit packet-id represents each
packet.

Application code may request that a packet
return an appropriate UCS object. If a resource
packet contains only a native object value, UCS
converts the native object to UCS form, through its
type-handler, then saves the UCS object in the
packet. UCS satisfies additional requests for the
UCS object from the cached value. The converse,
from UCS to native form, behaves similarly. Since
native objects are often dependent on screen-type, in
Xl 1, there may be several cached native objects in a
single packet.

UCS resources are stored natively as Macintosh
resource forks, Windows resource files, and Xl 1
resource databases.

Resource objects improve functionality and
portability. The Xt toolkit allows resource
conversions to be registered. UCS resource objects
provide similar functionality.

Resource packets enhance efficiency. Without
resource caching, resource type conversion can cause
a noticeable slowdown. Furthermore, on Xl 1 the
caching of multiple representations is practically
required, since UCS supports multiple screens and
displays.

Resource packets improve extensibility. We
have discovered that applications that use both
native and UCS code perform frequent conversions.
The ability to pass a single 32-bit id to represent both
data representations has been extremely valuable.

Summary

UCS is a portable application development
environment designed by and for commercial
developers. We identified five important qualities
for a portable system, based on problems
encountered in porting and developing applications
under contract: efficiency, functionality, portability,
modularity and extensibility. Those qualities drove
the implementation of UCS, and gave it
characteristics not seen in other portability solutions.

To simultaneously maximize efficiency,
functionality, and modularity, UCS provides

multiple implementations of the same component.

It provides a rich message system for user-
interface objects. Messages are sent only if the
application requests them. The default behavior for
most messages can be modified or avoided by
filtering. Multiple callback routines can be installed
for a given object, allowing greater modularity in the
application program.

UCS has a unique interface to manage
menubars, which portably hides whether the native
system displays one or several menubars, while
maintaining complete functional control over their
contents.

UCS provides an extensible visual object system.
It supplies simple text, rich text, pixmap and icon
items. The application developer can supply new
visual objects, and use them seamlessly with buttons,
menus and lists.

UCS provides shared and run-time libraries on
all platforms, including Macintosh and several UNIX
variants.

483

Resource values in UCS are objects. Each
resource type has a handler which controls loading,
storing, and conversion of native resource values.
The application can install its own type-handlers or
use UCS-supplied defaults. A special resource object
encapsulates native and UCS objects, allowing the
developer to mix native and UCS code easily.

Under development since 1987, UCS has evolved
into a very rich, portable application development
environment. STI decided to incubate and validate
UCS internally, rather than doom an immature
product to upward compatibility. Under contract
over the last few years, STI has ported and
developed a number of commercial products with
UCS. Based on its commercial success, STI is now
making UCS available to customers. Our internal
users and external customers continue to demand
much from UCS - demands we intend to satisfy.

References

[Copl91] James 0. Coplien, Advanced C++:
Programming Styles and Idioms,
Addison-Wesley, New York, 1991.

[Grec90] Richard J. Greco, "Introduction to
Window Management," Course
Notes of the 17th International
Conference on Computer Graphics and
Interactive Techniques (August 6-10,
1991), pp. 19-35, SIGGRAPH, Dallas.

[Hayh91] Brett Hayhurst, "Issues in the
Development of a Portable Toolkit,"
Proceedings of the First Annual
International Motif User's Meeting
(December 8-11, 1991), pp. 236-247,
Open Systems, Bethesda.

[MacRef90] Inside Macintosh: Volumes 1-V, Apple
Computer Inc., Addison-Wesley,
New York, 1991.

[Micr90] Microsoft Windows Graphical
Environment User's Guide, Version
3.0, Microsoft Corporation,
Redmond, Washington, 1990.

[Nich91] Robert T. Nicholson, "Designing a
Portable GUI Toolkit," Dr. Dobb's
Journal, (January 1991), pp. 68-75.

[Rose91] Larry Rosenstein and Joseph S.
Terry, "OOPS Architectures:
MacApp and THINK Class Library,
MacTutor, 7 (1), (January 1991), pp.
14-23.

[Roch91]

[WinRef90]

Marc J. Rochkind, "XVT-The
Extensible Virtual Toolkit for
Portable GUI Applications,"
Proceedings of the First Annual
International Motif User's Meeting
(December 8-11, 1991), pp. 229-235,
Open Systems, Bethesda.

Microsoft Windows Software
Development Kit, Version 3.0,
Microsoft Corporation, Redmond,
Washington, 1990.

484

