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Abstract 

The Universal Component System™ (UCS) is a platform-independent application 
development system targeted for large-scale, commercial applications. UCS runs on several 
platforms, including Microsoft Windows, Macintosh, Unix/Motif, and Open-Look. UCS 
addresses three major aspects of application portability: user interface, system services, and 
connectivity. UCS uniquely addresses traditional functionality-performance design tradeoffs 
by providing an architecture scalable to application developers' needs. 

This paper describes the design philosophy of UCS, and contrasts it with other 
approaches. We highlight several unique aspects of the system, illustrating how our goals 
influenced the design of specific UCS components. Based on our experiences using UCS to 
develop and port software under contract, we believe the approach will be extremely useful for 
original software developers, as well as for those porting existing software. 

Introduction 

Several common software platforms provide 
graphical user interface facilities: Microsoft 
Windows, OS/2, Macintosh, Motif, Open-Look, 
Next, etc. Each platform has technical 
idiosyncrasies, strengths, and weaknesses, e.g., 
Windows and Macintosh provide no timesharing, 
Motif has oddly-constructed keyboard traversal 
mechanisms and provides no graphical printing 
facilities. Each platform has a different user profile, 
with different pricing expectations, graphical needs, 
and installed base. 

Application designers have faced a choice: 
develop their application for a single platform, or 
use a portability toolkit to mask differences between 
the platforms. Unfortunately, most portability 
toolkits provide limited functionality or focus solely 
on user interface services. The Universal 
Component System™, a commercial product 
developed by Software Transformation, Inc. (STI), 
addresses three aspects of application development: 
operating system services, user interface 
management, and connectivity. As a result, UCS 
developers can use a broad range of features 
including platform-independent dynamic linking, 
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printing, rich text editing, and object embedding. As 
opposed to other solutions based solelv on 
abstraction and augmentation techniques, UCS's 
scalable approach resolves tradeoffs between 
functionality and performance by enabling 
developers to configure UCS to their needs. 

This paper describes five design principles 
embodied in UCS and then examines how these 
principles influenced some particular design areas: 

• Functionality-performance tradeoffs 
• Messages 
• Menubars 
• Extensible visual objects 
• Dynamic Linking 
• Resources 

Design Goals 

UCS tries to maximize five qualities: efficiency, 
functionality, portability, modularity and 
extensibility. 

Efficiency 

Strive for maximum efficiency. 



Applications based on portable techniques must 
be indistinguishable from their natively-built 
competitors. 

Functionality 

Add capabilities to each platform where they lack 
functionality. 

Constraining functionality to what is available 
on all platforms provides limited advantage to using 
a portability tool. Adding functions to individual 
platforms generated much design and 
implementation work for us-work the application 
writer avoids by using UCS. 

Portability 

Three portability goals drive UCS: Enable the user 
to write a complete application without using the 
native system, track attributes of new native releases, 
and retain native look-and-feel. 

A complete solution to portability dramatically 
decreases the cost of developing and maintaining an 
application. The application writer need not 
understand and code separately for each platform. 
Development, testing, and repair all become easier. 

Using higher-level native interfaces allows the 
application to grow naturally with new releases and 
variants of the underlying platform. Furthermore, 
an application written partially to UCS and partially 
to the native interface can use higher-level native 
objects. 

Modularity 

UCS has two modularity goals: Allow the developer 
to select only those components that the application 
needs, and to tailor individual components to the 
application's requirements. 

Modularity distinguishes UCS from other 
solutions. While a single all-encompassing 
component can satisfy the requirements of most 
applications, unneeded functionality can degrade 
efficiency and increase program size. With different 
versions of a component, the developer can decide 
how to balance functionality and efficiency for 
herself. 

Extensibility 

Allow the application writer to freely mix native 
subroutine calls with portable system calls 
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Extensibility provides three advantages: An 
existing program can incorporate additional 
functionality supplied by UCS without rewriting the 
whole application. An application can take 
advantage of proprietary platform-specific 
technology, such as a special font engine. An 
implementation can provide platform-specific 
functionality or greater efficiency on platforms that 
support it. 

Design Areas 

In this section we describe some unique aspects 
of UCS, and point out how our design philosophy 
influenced the result. 

Functionality/Performance Tradeoffs 

The real challenge of any portable development 
system is to enable a developer to produce an 
application as efficient and feature-rich as one 
written natively. To accomplish this, the system 
must enable developers to use the same design 
process they follow when crafting an application 
natively: 

1. A developer utilizes services provided by the 
native operating system when they meet the 
functional and performance needs of the target 
application. 

2. When services are inadequate, the developer 
bypasses the system and implements missing 
capabilities using lower-level facilities of the 
system. 

Traditional libraries, class systems, and 
portability abstractions cannot exactly match the 
performance and functionality required by a 
particular application, because libraries must 
provide a generic system usable by many 
applications. A single, generic library can't meet the 
specific needs of all applications. This is 
demonstrated by examining the 
performance/ functionality tradeoff involved in text 
editing. Below are three example applications and 
the text-editing features they require: 



Features App 1 App2 App3 
# of lines in view multiple multiple multiple 
scrollable view yes yes yes 
cut /copy /paste yes yes yes 
# of fonts in view single multiple multiple 
graphics no no no 
# of characters < 32767 < 32767 > 32767 

Figure 1 : Sample text editing requirements 

The developer must analyze the text-editing 
services provided by each of the native operating 
systems: 

Mac MSW x 
Features TextEdit Edit Widget 

# of lines in view multiple multiple multiple 
scrollable view yes yes yes 
cut/copy/paste yes yes yes 
# of fonts in view multiple single single 
graphics no no no 
# of characters < 32767 < 32767 > 32767 

Figure 2: Platform text editing capabilities 

Application One can use standard text-editing 
services on all platforms. Application Two can use 
native Macintosh TextEdit. Application Three 
cannot use standard services on any platform 
because of multiple fonts and memory limitations. 

A traditional library or abstraction cannot satisfy 
all requirements. The developers of Application One 
can use the native text-editing services on all 
platforms. However, a library built on this basis 
would be unusable by Application Two and Three. 
To build a single text-edit library usable by 
Application Three, on the other hand, a library 
would have to replace native services on every 
platform. This diverges from the developer's desire 
to use native, minimalist facilities where appropriate. 

Replacing native services to satisfy the 
functional requirements of a minority of applications 
leads to problems. First, the majority would have to 
be replaced, even native implementations of Push 
Buttons. More importantly, application performance 
would decline, due to unnecessary library 
complexity and inefficiency. Each replacement also 
results in decreased compatibility as native systems 
change in appearance and functionality . 

UCS offers a more efficient implementation for 
applications because components have multiple 
implementations based on native operating system 
capabilities and application requirements. The 
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developer can configure a UCS software component 
to the specific requirements of the application. In the 
case of text-editing, UCS offers more than six 
possible implementation choices varying in 
complexity. Configurability, often referred to as 
scalability, enables UCS to provide a diverse range of 
features, each at an optimal level of performance. 
This approach gives UCS a unique advantage over 
other traditional reusability, abstraction, and 
augmentation techniques. 

UCS divides native services into software 
component families. Families consist of different 
components scaled to meet specific requirements. 
This core component of each family is the most 
efficient implementation of the most basic features. 
Each additional implementation of a family is called 
an extension. For example, the extension of Edit Text 
that supports multiple fonts in a view is called the 
'Edit Text MultiFont Extension.' Some UCS families 
provide more than a dozen extensions, such as 
Graphics, and other require none at all, such as 
Keyboard. 

No matter how many extensions a family may 
contain, all must support the same upwardly-
compatible APL This is necessary for many reasons. 
First, a common family API enables the developer to 
easily change components as her product evolves. 
Second, developers will want to configure 
applications differently on different platforms, and 
in some cases, on different incarnations of the same 
platform. For example, developers may want to run 
with the Memory Swapping extension on platforms 
that do not support virtual memory natively, but 
without this extension on platforms that do. Third, a 
common family API enables developers to produce 
different application modules that share the same 
component configuration at run-time. 

Messages 

Due to the modeless nature of many system 
services, most development platforms, including 
UCS, provide a message system. Several issues 
motivate this approach: 

1. Applications and interface objects must deal 
with events asynchronously; a message system 
ideally satisfies such requirements. 

2. Multiple clients can send and receive messages 
from a single instantiation of a system service; 
this allows for service sharing between 
applications [Grec90]. 



3. Messages provide a straightforward method of 
interprocess communication. 

4. Messages are easily mapped into methods 
defined by object-oriented classes. 

UCS divides messages into two categories: 
requests and notifications. An application requests an 
operation by sending a message; UCS notifies an 
application when a component completes an 
operation on its behalf. Operations performed in 
response to messages are called default behaviors. For 
example, an application inserts a string into a list by 
sending a message. The list performs its default 
behavior by inserting the item and repainting as 
necessary. Upon completion, the list returns a 
message: 

Request 

ｾ＠D 
('Insert this Item') 

Nottflcaflon 

Apptication ('Item Inserted') Component 

Figure 3: Requests and notifications 

Components send notifications to developer-
specified callback routines. UCS also provides an 
extension that enables developers to install multiple 
callback routines per object. This approach has been 
referred to as the multiple listener model [Grec90]. To 
provide further flexibility, developers can intercept 
messages before and after default processing. This 
mechanism, called filtering, enables developers to 
replace or modify a component's default behavior: 

Request 

Pr&-fllter 

Modify, 

11 Conttrue. or 
Abort? .. 

... Post-filter I ' 

• 

Appllcallon Component 

Figure 4: Pre- and post-filters 

Unnecessary message traffic can cause severe 
performance problems. For example, some native 
systems notify the application of every keystroke in a 
text field, whether the application requires such 
information or not [WinRef91]. UCS eliminates 
unnecessary message flow by sending messages only 
when specifically authorized for a given message. 
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The developer authorizes notifications by associating 
a filter bitmask with each interface object: 

'01 MSG INIT 
0 MSG IERM 

0 MSG_CREATE 

0 MSG_DESTIIOY 

D 
1 ｾｍｓｇ｟ｓｈｏｗ＠

0 MSG_HIDE !-'---
-- 1 MSG_DRAW 

0 MSG SBECT 

0 ll_MSG MOVE Appllcalon 
Component 

Figure 5: Notification Authorization 

UCS always builds its messaging abstraction 
upon native message services, thus enabling 
developers to communicate with other executing 
native processes. Since UCS messages use the native 
system, developers can incrementally migrate their 
applications to UCS. 

Comparisons 

Most native systems limit notifications to a 
single user-installed callback [WinRef90], 
[MacRef90J. Most portability solutions limit access 
to the underlying message system and/or constrain 
notifications to a limited set of messages [Roch91]. 

Menu bars 

Application menubars in three common 
platforms, Windows, Macintosh, and Xll/Motif, 
exhibit significant differences, as illustrated in Figure 
6. 

:"!:- Edi 

Mac Into eh 

-l ｾ＠

ｉｅｬ･ｾ＠ HM> 

[bJ 
CUA-MDI Window• 

Figure 6: Menubars on three platforms. 

There are only two user-interface menubar styles 
as far as the programmer is concerned: single 
menubar and multiple menubar. Microsoft 



Windows allows either style, but typical Windows 
application use the single menubar style. Motif also 
allows both styles, but typical Motif applications use 
the multiple menubar style. Macintosh supports 
only the single menubar style. 

The application writer wants to write a single, 
portable application which adopts the native look-
and-feel. If there is a single menubar, she wants to 
modify it to correspond with the currently active 
top-level window. If there are multiple menubars, 
she wants to have each menubar look different. To 
accommodate the expectations of our users, we 
accommodate both styles in a uniform, application-
transparent way. 

A single "shared menubar" is associated with 
each UCS application. This shared menubar 
contains cascade-menu buttons to be included on all 
top-level windows. The shared menubar never 
physically appears on the screen. Each top-level 
window has a "local menubar," which can appear on 
the screen. 

When a top-level window is activated, i.e., when 
one of its sub-windows acquires keyboard focus, the 
top-level window inherits the contents of the shared 
menu bar. 

Ale Edit Help 

L..-

Figure 7: Single menubar style. 

In the single-menubar model, shown in Figure 7, 
the application has access to only one visible 
menubar on the screen, regardless of the number of 
top-level windows. When a window gains control of 
the menubar-typically by becoming active, gaining 
keyboard focus or rising to the foreground-it can 
add window-specific cascade-menus to the menubar, 
or add items to individual cascades. When the 
window loses control of the menubar, it is required 
to remove any window-specific items that it added. 
UCS sends "menubar gained" and "menubar lost" 
messages to the window whenever its control of the 
menubar changes. 
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Figure 8: Multiple menu bar style. 

In the multiple-menubar style, shown in Figure 
8, each window has an independent, visible 
menubar. When a window is created, UCS clones 
the window's local menubar from the shared 
menubar. UCS sends a "menubar gained" message 
to the window, then makes the local menubar 
visible. If the application never changes the shared 
menubar, the window instance will never receive a 
"menubar lost" message. 

Uniform Menubars 

A programmer with simple requirements should 
be able to write the program simply. If all menubars 
are identical, implementation is trivial; the 
application sets the contents of the shared menubar, 
and creates the windows (which can turn off 
menubar gained and lost messages). 

Window-Specific Menubar Changes 

The programmer can add or delete cascade-
buttons on the shared menubar anytime, if the 
application follows a standard protocol; it first 
withdraws control of the menubar(s) from all 
window instances by calling UMenuGetMenubar. 
UCS sends a menubar lost message to all windows 
that have control of their local menubar. If the 
window has made local changes to the menubar, it 
removes them. 

When UMenuGetMenubar returns, the program 
modifies the contents of the shared menubar. It 
returns control to the window(s) by calling 
UMenuReleaseMenubar. At this point, UCS sends a 
menubar gained message to each window that lost 
control when UMenuGetMenubar was called. 

Some thoughts worth pondering: On a single-
menubar platform, at most one window has gained 
control of its local menubar; on a multiple-menubar 
platform, either all windows have gained control 
over their local menubars or none have. The 
implementation can be made very efficient. Since a 



window must remove its changes whenever it loses 
control, on single menubar systems UCS creates only 
the shared menubar ID; it is also the local menubar 
ID! On multiple menubar systems, if the shared 
menubar is never changed (the common case), 
overhead for cloning the menubar only occurs when 
windows are created. 

Cascade-Menu Changes 

UCS supports shared cascade-menus, providing 
two principle advantages: the UCS system can 
efficiently clone menubars, and UCS applications can 
easily invoke the same cascade in different contexts. 

Because application writers often want to 
modify only a portion of a pull-down menu (for 
example, a File cascade), UCS provides a convenient 
mechanism for modifying the contents of a menu-
cascade immediately before it is invoked. Selecting a 
cascade on a menubar causes UCS to send a 
"menubar activated" message to the application. It 
may then add or delete individual cascades to 
correspond to the present context. 

For even finer control, UCS provides an 
extension that notifies individual cascade menus 
immediately before they are invoked. Because this 
involves significant overhead on some platforms, we 
provide it as a UCS extension. 

Comparisons 

In summary, the UCS application writer can use 
any of three techniques to customize menubars for 
top-level windows: 

1. Set the local menubar contents whenever a 
window receives a menubar gained message. 
Restore the local menubar contents whenever a 
window receives a menubar-gained message. 

2. If each window's menubar looks exactly the 
same, but the contents of the cascade menus are 
different, modify the contents of the menu 
cascades whenever the application receives a 
menubar activate message. 

3. If the Cascade Notify Extension is installed, 
modify individual cascades whenever they 
receive cascade-menu activate messages. 

One internal portability toolkit adopted a fourth 
approach for menubars [Nich91]. The menubar has 
two components: a shared component and a local 
component. Under the single-menubar style, 
whenever a window is activated, the a new menu bar 
is constructed by concatenating the shared 
component and the window's local component. 
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Under the multiple-menubar style every window 
includes a menubar concatenating the shared 
component and its local menubar component. 

UCS does not use that model because it was not 
a complete solution. It does not allow local menubar 
variations to be inserted, for example. The UCS 
approach, which appears to be unique, subsumes 
that approach as well as several others [Hayh91]. 

Extensible Visual Objects 

A survey of commercial products demonstrates 
that developers require a wide variety of interface 
support facilities: 

./Plain Te HI 
Bold 
llalir 
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N£WCUST 
BUSINCSS 
!)!I 

Ii# Address 

ｾ＠ Rh1rm CIOLk 

ｾ＠ Battery 

llifil Cnlculalor 

ｾｃｄ＠ Control 

Figure 9: Common interface extensions 

Commercial products combine text, pixmaps, 
colors, and multimedia images within standard 
interface objects. Other products enhance traditional 
interface objects with non-traditional input 
characteristics, keyboard equivalents, and macros. 
Few native systems support these techniques 
directly. Since competitive applications require 
powerful and unique user interfaces, development 
systems must meet a strict set of requirements: 

1. To guarantee commercial acceptance by users 
and platform providers, user interfaces must 
conform to strict platform guidelines. Users 
should not be able to distinguish a native 
interface from one produced portably. 

2. To ensure maximum performance and 
compatibility with platform revisions, portability 
solutions must use and extend native interface 
facilities. 

3. To allow for product innovation, interface 
facilities must provide extensibility to new input 
mechanisms, display images, and other 
customizations. 

UCS divides interface facilities into controls and 
items. Lists, buttons, tables, and menus are 
examples of controls. Text, bitmaps, and colors are 
examples of items. The developer is free to combine 



any type of item with any control. As a result, text 
lists, bitmap lists, and combinations thereof can be 
manipulated with equal ease. Likewise, all controls 
display pixmaps and text without requiring 
developer modifications. Based on the variety found 
in commercial applications, UCS provides 
components for all native controls and more than 
seven types of items. 

Rddress 

"" ""Address 

("" Rddr-es s ) 

.. ' 
.,, ｾｒ､､ｲ･ｳｳ＠

""Address 
ｾ＠ Alarm [lock 

B Battery 

ｾ＠ Rlarm Clock 

B Battery 

Figure 10: Items and controls 

Controls define and manage the selection 
characteristics, layout, scrolling, and updating of a 
user interface object. Items manage the painting, 
storage, mnemonic selection, and other operations 
specific to an item's data type. Controls and items 
behave according to a master-slave relationship, 
where the control is always in charge and the item 
responds to requests on a control's behalf. Since the 
control-item API is externally defined, developers 
can freely create new item types and combine them 
with any existing control. Likewise, the developer 
can easily create a new control type for use with 
existing item types. This greatly reduces the 
complexity of enhancing existing interface 
management systems. 

The developer specifies a control type and item 
type when an object is first created. UCS maps this 
request into the most efficient native 
implementation. For example, a text list request 
results in a standard Macintosh List or Windows 
ListBox, while a bitmap list request results in an 
LDEF-based list or 'owner-draw' ListBox. This 
technique avoids unnecessary messaging, sub-
classing, or use of non-standard control definition 
procedures. 

The developer manipulates a control 
independent of the item type it contains. For 
example, item selection, deletion, and addition use 
the same message types and message-specific data 
whether the control contains a pixmap or a text 
string. As a result, the developer can easily modify 
an interface object from a list to a menu or from a list 
of strings to a list of strings and bitmaps. 

Because of the control-item separation, an item 
can optimize data storage based on a control's needs. 
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For example, list items can be stored in heaps on one 
platform, zones on another, or linked lists on a third. 
In addition, developers can define application-
specific storage methods, a feature which is 
commonly required by applications that store large 
quantities of data. This mechanism avoids the 
memory overhead of interface objects that store 
copies of data or data reference values. Items can 
also be used to define references to OLE or Edition 
Manager objects. 

Dynamic and Run-Time Libraries 

When one binds an application to subroutine 
libraries, one commonly expects code from the 
libraries to be merged with the application and 
written to the executable file. This operation is 
called "static linking." If the libraries can only be 
statically bound to applications, they are "static 
libraries." 

In some operating systems, code from 
subroutine libraries can be omitted from the 
compiled program. When the system invokes an 
application, it finds and loads the library files, loads 
the executable file, resolves external references, and 
begins execution. This process is called "dynamic 
loading." Sometimes the operating system can 
satisfy several demands for a library with a single in-
memory copy of the library. These libraries, which 
create a special case of dynamic loading, are called 
"shared libraries." 

In some operating systems, an application can 
invoke a subroutine from a library file using a run-
time generated string name. Neither the linker nor 
the loader binds the external reference; indeed, the 
string name could even be typed by the user. Such 
libraries are called "run-time libraries," since the 
binding of name to address occurs during program 
execution. 

Dynamic libraries significantly reduce the size of 
executable files, particularly when graphics interface 
routines are in the shared library. On a Sparcstation, 
code from standard XI I libraries can easily consume 
80 to 90% of a small Motif application's statically-
linked executable file. Shared libraries reduce the 
memory requirements of co-resident programs that 
use the same libraries. 

Run-time libraries further reduce memory 
requirements, particularly when an application user 
rarely exercises all the application's features. 
Infrequently used features can be relegated to a run-
time library, and invoked only when required. 



One might think shared and run-time libraries 
would be universal, given their usefulness. They are 
not. Only Microsoft Windows supports both 
capabilities natively. Even then, using native shared 
libraries on Windows is quite painful: static data is 
ｾ｣ｴｵ｡ｬｬＡ＠ shared between different library 
invocations. Some variants of UNIX support only 
shared libraries, some support both shared and run-
ｴｾ･＠ ｬｩｾｲ｡ｲｩｾｳＬ＠ and ｾｯｭ･＠ support only statically-
linked hbranes. Macmtosh supports neither shared 
nor run-time libraries. 

UCS supplies shared and run-time subroutine 
libraries on all platforms. This was one of our most 
difficult implementation exercises. Particular 
difficulties included writing a dynamic loader for the 
Macintosh from scratch, and dealing with a plethora 
of executable formats on UNIX. 

Nonetheless, we believe that our decision to 
ｾｵｰｰｯｲｴ＠ shared and run-time libraries has proved 
invaluable. Executable code produced under UCS is 
much smaller than code from other portability 
systems. We make frequent use of run-time libraries 
to reduce the memory requirements of our 
applications. This allows us to run applications on 
smaller, cheaper, and more common personal 
computers, giving UCS applications the widest 
possible audience. 

Resources: Object Orientation 

Resources are data records stored in an 
application's executable file, in library modules, or in 
ｳ･ｰｾｲ｡ｴ･＠ resource files. Application designers 
typically store customization information about the 
application's appearance or behavior in resources. 
Typical resource values include colors, window 
sizes, ｾｩｴｭ｡ＮｰｳＮ＠ UCS provides a facility for specifying 
an entire window system hierarchy in resource files. 

Changing a value in a resource file does not 
require regenerating the executable. This provides a 
convenient means for an application designer to 
change the appearance and behavior of the program 
rapidly, and it allows the user to customize an 
application .without having the source code. Using 
tools supplied by STI, an application designer can 
build the graphical user interface directly on a 
screen, and write the corresponding resource values 
to a resource file. 

The program identifies a resource record by two 
numbers: its type-id and its key number. Unlike 
some platforms' native behavior, a resource record 
cannot be uniquely identified by its key alone. 
Programs can register a "type-handler'' for any type-
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id. This ｨ｡ｮ､ｬｾｲ＠ becomes responsible for loading 
resources from files and for performing conversions 
to and from UCS "objects" (see below). 

A ｾｵｭｾ･ｲ＠ of ｾｴ｡ｮ､｡ｲ､＠ UCS resource types are 
ｾｲ･､･ｦｩｮ･､Ｌ＠ including a color type, a bitmap type, an 
icon type, etc. Each standard UCS resource type has 
a default type-handler pre-installed. The 
programmer may override this default type-handler 
if desired. 

Although user-supplied type-handlers may 
support platform-independant data formats, most 
UCS standard resources have platform-dependant 
data formats, and the resource data must be 
converted when moving an application between 
platforms. STI supplies tools to convert resources 
ｦｲｯｾ＠ one ーｬ｡ｴｾｯｲｭ＠ to another. However, program 
designers typically change an application's visual 
appearance, through its resources, to match a new 
platform's interface style and display capabilities. 

. Resource type-handlers form part of an object-
onented system that works seamlessly with other 
UCS components. A type-handler controls access 
and external representation of objects that have the 
appropriate type-id. Code that has a resource object 
can convert it, through its type-handler, to the 
representation it needs. Other UCS components can 
define their own types and type-handlers: the 
resource component transparently handles them like 
its own. 

. ｾ＠ special object class, called a "packet", 
facilitates easy exchange between native and UCS 
objects. It also allows UCS to cache converted 
values. Packets are created from two things: a 
resource type-id, and either a native resource value 
another UCS component value or a UCS ｲ･ｳｯｵｲ｣ｾ＠
component value. A 32-bit packet-id represents each 
packet. 

Application code may request that a packet 
return an appropriate UCS object. If a resource 
packet contains only a native object value, UCS 
converts the native object to UCS form, through its 
type-handler, then saves the UCS object in the 
packet. UCS satisfies additional requests for the 
UCS object from the cached value. The converse, 
from UCS to native form, behaves similarly. Since 
native objects are often dependent on screen-type, in 
Xl 1, there may be several cached native objects in a 
single packet. 

UCS resources are stored natively as Macintosh 
resource forks, Windows resource files, and Xl 1 
resource databases. 



Resource objects improve functionality and 
portability. The Xt toolkit allows resource 
conversions to be registered. UCS resource objects 
provide similar functionality. 

Resource packets enhance efficiency. Without 
resource caching, resource type conversion can cause 
a noticeable slowdown. Furthermore, on Xl 1 the 
caching of multiple representations is practically 
required, since UCS supports multiple screens and 
displays. 

Resource packets improve extensibility. We 
have discovered that applications that use both 
native and UCS code perform frequent conversions. 
The ability to pass a single 32-bit id to represent both 
data representations has been extremely valuable. 

Summary 

UCS is a portable application development 
environment designed by and for commercial 
developers. We identified five important qualities 
for a portable system, based on problems 
encountered in porting and developing applications 
under contract: efficiency, functionality, portability, 
modularity and extensibility. Those qualities drove 
the implementation of UCS, and gave it 
characteristics not seen in other portability solutions. 

To simultaneously maximize efficiency, 
functionality, and modularity, UCS provides 

multiple implementations of the same component. 

It provides a rich message system for user-
interface objects. Messages are sent only if the 
application requests them. The default behavior for 
most messages can be modified or avoided by 
filtering. Multiple callback routines can be installed 
for a given object, allowing greater modularity in the 
application program. 

UCS has a unique interface to manage 
menubars, which portably hides whether the native 
system displays one or several menubars, while 
maintaining complete functional control over their 
contents. 

UCS provides an extensible visual object system. 
It supplies simple text, rich text, pixmap and icon 
items. The application developer can supply new 
visual objects, and use them seamlessly with buttons, 
menus and lists. 

UCS provides shared and run-time libraries on 
all platforms, including Macintosh and several UNIX 
variants. 
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Resource values in UCS are objects. Each 
resource type has a handler which controls loading, 
storing, and conversion of native resource values. 
The application can install its own type-handlers or 
use UCS-supplied defaults. A special resource object 
encapsulates native and UCS objects, allowing the 
developer to mix native and UCS code easily. 

Under development since 1987, UCS has evolved 
into a very rich, portable application development 
environment. STI decided to incubate and validate 
UCS internally, rather than doom an immature 
product to upward compatibility. Under contract 
over the last few years, STI has ported and 
developed a number of commercial products with 
UCS. Based on its commercial success, STI is now 
making UCS available to customers. Our internal 
users and external customers continue to demand 
much from UCS - demands we intend to satisfy. 
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