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ABSTRACT OF THE DISSERTATION

Simulated Annealing with Errors

by

Daniel Rex Greening

Doctor of Philosophy in Computer Science

University of California� Los Angeles� ����

Professor Milo�s Ercegovac� Chair

Simulated annealing is a popular algorithm which produces near�optimal so�

lutions to combinatorial optimization problems� It is commonly thought to be

slow� Use of estimated cost�functions �common in VLSI placement� and parallel

algorithms which generate errors can increase speed� but degrade the outcome�

This dissertation o�ers three contributions� First� it presents a taxonomy of

parallel simulated annealing techniques� organized by state�generation and cost

function properties�

Second� it describes experiments that show an inverse correlation between cal�

culation errors and outcome quality� Promising parallel methods introduce errors

into the cost�function�

Third� it proves these analytical results about annealing with inaccurate cost�

functions� �� Expected equilibrium cost is exponentially a�ected by ��T � where �

expresses the cost�function error range and T gives the temperature� �� Expected
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equilibrium cost is exponentially a�ected by ���T �� when the errors have a Gaus�

sian distribution and � expresses the variance range� �� Constraining range�errors

to a constant factor of T guarantees convergence when annealing with a �� log t

temperature schedule� 	� Constraining range�errors to a constant factor of T guar�

antees a predictable outcome quality in polynomial time� when annealing a fractal

space with a geometric temperature schedule� �� Inaccuracies worsen the expected

outcome� but more iterations can compensate�

Annealing applications should restrict errors to a constant factor of tempera�

ture� Practitioners can select a desired outcome quality� and then use the results

herein to obtain a temperature schedule and an �error schedule� to achieve it�
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CHAPTER �

Introduction

Simulated annealing is a computer algorithm widely used to solve di�cult op�

timization problems� It is frequently used to place circuits in non�overlapping

locations on a VLSI chip� Simulated annealing consumes substantial amounts of

computation�one or more computation days to place a circuit are not uncommon�

In response� researchers have parallelized annealing in many di�erent ways� with

mixed results�

The rst widely�available publication on simulated annealing� by Kirkpatrick et

al �KCV���� provides a brief practical overview� Van Laarhoven and Aarts provide

a more complete introductory treatment of simulated annealing �LA���� I was

impressed by the theoretical discussion in Otten and van Ginniken�s book �OG����

though it is a di�cult read� My review of it appears in �Gre��b��

This chapter provides enough introductory material that the dissertation stands

on its own� albeit somewhat abstractly� I construct the simulated annealing algo�

rithm by modifying the greedy algorithm� show how circuit placers use simulated

annealing� and describe the relationship between thermodynamics and simulated

annealing� Finally� I outline the rest of the dissertation�
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��� Simulated Annealing

Combinatorial optimization problems present this task� There is a nite set of

feasible states S� where each state s � S is represented by n state�variables� so

that s � �v�� v�� � � � � vn�� There is a cost�function C�S � R� Now� nd a state

with minimum cost� Many such problems are NP�complete or worse� Current

algorithms to solve NP�complete problems require exponential time� based on n�

A near�optimal state is often good enough in practice� Several algorithms

require only polynomial�time to produce a near�optimal state� One polynomial�

time heuristic for these problems is the �greedy algorithm�� Although it doesn�t

always produce a satisfactory outcome� it is the basis for simulated annealing�

����� The Greedy Algorithm

A greedy algorithm for combinatorial optimization has a generator� which out�

puts a randomly�chosen state from any input state� The set of output states

produced from input state s is called the neighborhood of s�

The algorithm randomly chooses a rst state� then starts a loop� The loop calls

the generator to obtain a trial�state from the current�state� If the trial�state has

lower cost� the algorithm selects the trial�state as its new current�state� otherwise�

it selects the old current�state� The greedy algorithm continues its loop� generating

trial�states and selecting the next state until some stopping criteria is met� usually

when it sees no further improvement for several iterations� The greedy algorithm
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then returns the current�state as its outcome�

The greedy algorithm has a �aw� many problems have high�cost local minima�

When applied to NP�complete problems it will likely return one�

����� Simulated Annealing

Simulated annealing augments the greedy algorithm with a random escape

from local minima� The escape is controlled through a value called �temperature��

Higher temperatures make the algorithm more likely to increase cost when selecting

a trial�state� In this way� simulated annealing can �climb out� of a local minimum�

�� T � T��
�� s� starting � state�
�� E � C�s��
	� while not stopping�criteria��
�� s� � generate�s� with probability Gss��

� E � � C�s���
��  � E � � E�
�� if � � �� � �random�� � e���T �
�� s� s��
��� E � E ��
��� T �reduce�temperature�T ��
��� end while�

Figure ���� Simulated Annealing

Figure ��� shows the simulated annealing algorithm� Line � sets the initial

temperature to T�� Lines � and � set the current�state s and its cost E� The loop

at lines 	��� generates a trial�state s�� evaluates the change in cost  � selects the

next current�state� and reduces the temperature until the stopping criteria is met�
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Line � shows how simulated annealing accepts a trial�state� The rst term�

� � ��� expresses greed� it always accepts a lower�cost trial state� The random

function returns a uniformly�distributed random value between � and �� The

second term of line 
� �random�� � e���T �� expresses the likelihood of accepting a

costlier trial�state�

When the stopping criteria is met� simulated annealing returns current�state s

as its outcome�

At high initial temperatures� the second term of line � lets the algorithm explore

the entire state space� it accepts almost all cost�increases� As the temperature

drops� it explores big valleys� then smaller and smaller sub�valleys to reach the

outcome� This allows it to escape local minima� as illustrated in Figure ����

Greedy Algorithm Simulated Annealing Algorithm

CostCost

State State

a. b.

Figure ���� Annealing is a Modied Greedy Algorithm

Simulated annealing has a useful property� at a xed temperature� it �equi�

librates�� That is� it approaches a stationary probability distribution� or �equi�

librium�� Temperature changes are usually chosen to keep transient distributions

close to equilibrium� Simulated annealing�s equilibrium is the �Boltzmann distri�

	



bution�� a probability distribution dependent solely on the cost�function�

These terms�annealing� equilibrium� temperature� Boltzmann distribution�

etc��come from thermodynamics� Though I describe simulated annealing as an

algorithm� it behaves like a thermodynamic system� Many publications on simu�

lated annealing appear in physics journals� To help explain simulated annealing�

I will discuss thermodynamic annealing in x����

����� Applications

Simulated annealing has been applied to several combinatorial optimization

problems� Laarhoven�s summary work �LA��� describes traditional applications� I

list a few common applications� and some obscure ones below�

VLSI design� circuit placement and routing �Sec��� KCV���� circuit delay min�

imization �CD�
�� channel routing �BB���� array optimization �WL���� Hardware

Design� data��ow graph allocation �GPC���� digital lter design �BM��� CMV����

network design �BG��a�� digital transmission code design �GM���� error�correcting

code design �Leo���� Database Systems� join query optimization �Swa��� SG����

distributed database topology �Lee���� Operations Research� university course

scheduling �Abr���� job shop scheduling �LAL���� Formal Problems� the minimum

vertex cover problem �BG��b�� the knapsack problem �Dre���� sparse matrix or�

dering �Doy���� maximum matching �SH���� Image Processing� image restoration

�BS��� ZCV���� optical phase retrieval �NFN���� nuclear�magnetic resonance pulse

optimization �HBO���� Organic Chemistry� protein folding �BB��� Bur��� NBC���
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WCM���� other molecular conguration problems �KG���� Arti�cial Intelligence�

perceptron weight�setting �Dod���� neural network weight�setting �Eng���� natural

language analysis �SHA����

Though annealing gives good results for these problems� it requires much com�

putation time� Researchers have made several speed�up attempts� di�erent parallel

techniques� temperature schedules� cost functions� and move generation schemes�

����� Circuit Placement

Circuit placement was one of the rst simulated annealing applications �GK����

Reducing the area of a VLSI chip decreases its fabrication price� shortening total

wire length increases its speed� Rearranging the circuits will change both proper�

ties� Optimizing this arrangement is �circuit placement��

Simulated annealing remains popular for automatically placing circuits in chips

�KCP�	�� It has been used at IBM �KCV���� Thinking Machines �Wal���� and

several universities �Sec���� Commercially available CAD programs provided by

Seattle Silicon� Mentor Graphics� and Valid use simulated annealing�

Circuit placement is the primary target problem in this dissertation� chosen

for two reasons� rst� simulated annealing is widely used for industrial circuit

placement� second� placement consumes tremendous computing resources� It has

become a major bottleneck in the VLSI�design process� second only to circuit

simulation�

E�cient simulated annealing techniques help engineers produce chips more






rapidly� with less expensive equipment� Faster algorithms allow chip manufacturers

to reduce computation costs and improve chip quality�

������� Variants

...

x, y grid integral. x grid real.
y grid integral.

a.  Gate−Array b.  Row−Based c.  Fully−Custom

x, y grid real or
irregular integral.

...

Grid

Circuit Shapes

Figure ���� Classes of Circuit Placement

Variants of circuit placement fall into three categories� The simplest is �gate�

array placement�� Circuits have uniform height and width� They must be placed

at points on a uniform grid� as shown in Figure ���a� The name �gate�array

placement� comes from programmable gate�array chips� each gate is at a grid

position�

Another variant is �row�based placement�� Circuits have integral height �e�g��

�� �� or �� and unrestricted width �e�g� ���	 or ������ as shown in Figure ���b�

This occurs in some CMOS circuits� where restrictions on the size and relative

placement of P�wells and N�wells enforces an integral height�

The most complicated variant is �macro�cell� or �fully�custom� placement�
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Circuits may take any rectilinear shape� Feasible placement locations might be

limited by the user� Each circuit might be assigned a circuit�class� and certain

areas designated for particular circuit�classes� Odd shapes and area restrictions

can appear in placing bipolar circuits� particularly on �semi�gate array� circuits

where some mask steps are always done with the same pattern�

������� Cost Functions and Move Generation

bounding box

half perimeter

b.  Wirelength d.  Overlapa.  Example chip

2

2

3

1

2

1

2 4 3 3

c.  Congestion

horizontal congestion

vertical congestion

overlap

Figure ��	� Components of Placement Cost Function

Figure ��	a shows an example chip with ve circuits� Each circuit contains

pins represented by solid black squares� A wire connects pins on di�erent circuits�

this pin collection is a �net�� The example has four nets� The wires usually have

�Manhattan� orientation� they run horizontally or vertically� never at an angle�

Figure ��	b shows how circuit placers often estimate the wire length of a net�

A bounding�box is constructed around the net�this is the minimum rectangle

containing the pins� The wire length to connect the pins is estimated at half the
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bounding�box perimeter� The half�perimeter is an approximation� x	���� discusses

this in detail�

If there are n nets� and each net i has a half�perimeter length of wi� then the

total wire length is W �
Pn

i��wi� The total wire length is loosely related to a

chip�s speed� The length of the critical path would provide a better measure� but

this is expensive to compute� I know of no placement programs that do it�

In VLSI chips� wires have a non�zero width which contributes to the chip�s total

area� Adding vertical wires to a chip causes the chip to widen� Adding horizontal

wires to a chip causes it to heighten� This is �wire congestion�� Figure ��	c shows

how wire congestion is estimated�

To obtain the horizontal congestion� divide the chip with uniformly�spaced

horizontal cuts� Count the half�perimeters that cross each horizontal cut� This

number is called a �crossing count�� Suppose there are n horizontal cuts� and

cut i � f�� � � � � ng has a crossing count of hi� Then the horizontal congestion is

computed as H �
Pn

i�� h
�
i �

To obtain the vertical congestion� follow the same procedure using vertical cuts�

The width added to a chip by vertical wires is a monotonic function of the hor�

izontal congestion� The height is a monotonic function of the vertical congestion�

These additions to the chip size increase its cost� its power consumption� and its

total wire�length�

In the usual VLSI technologies� real circuits do not overlap� However� a common

annealing hack allows overlap� but adds a high penalty in the cost�function� At high
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temperatures overlaps occur� but as the temperature lowers� the penalty becomes

su�ciently overwhelming to eliminate them�

Figure ��	d shows two overlaps� To compute overlap� choose xed x and y

units� The cost function counts the circuits co�existing in each location �x� y�� say

lxy� The total overlap is then typically computed as L �
P

x�y�min��� lxy � �����

More elaborate cost function components may be added� For example� pin

density may be a concern� too many pins in one area may decrease the chip�yield

or enlarge the chip� as does wire congestion� A system may allow a designer to

specify capacitance or resistance limits for each wire�

Each cost function component is given a weight and summed� The cost of a

placement s is C�s� � cwW �s� ! cvV �s� ! chH�s� ! clL�s��

a.  Example circuit b.  Translate c.  Swap d. Rotate

Figure ���� Generated Moves

Figure ��� shows the typical moves generated in a circuit placement program�

In Figure ���b� the L�shaped circuit in the upper right corner is translated to a

di�erent location� In Figure ���c� the two L�shaped circuits are swapped� changing

the nets attached to them �overlaps remain unchanged�� In Figure ���d� the circuit
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in the lower right corner is rotated �� degrees�

In short� circuit placers have substantial �exibility in how they compute cost�

functions� and how they generate moves� The general structure of the circuit

placement problem varies with gate�array� row�based� and macro�cell forms� It is

hard to generalize about placement problems� To make matters worse� companies

keep many interesting algorithms secret�

The problem richness and variety contributes to the wide use of simulated

annealing for circuit placement� Few good algorithms are as tolerant of di�erent

cost�functions and move�generation functions as simulated annealing�

������� Experiences

A popular row�based placement and routing program� called TimberWolfSC�

uses simulated annealing �SLS���� In a benchmark held at the ���� International

Workshop on Placement and Routing� TimberWolfSC produced the smallest place�

ment for the �����element Primary� chip��" smaller than its nearest competitor�

Moreover� it completed earlier than all other entrants� TimberWolfSC also routed

Primary�� no other entrant completed that task� In most of the competitions given

in the ���� International Workshop on Layout Synthesis� TimberwolfSC ��	 beat

all other entrants �Koz����

Placement requires substantial execution time� On a Sun 	��
�� Primary� re�

quired approximately � hours to place with TimberwolfSC� Execution times for

industrial simulated annealing runs have ranged from minutes to days on super�

��



computers�

��� Thermodynamic Annealing

There is no fundamental di�erence between a mechanical system and a

thermodynamic one� for the name just expresses a di�erence of attitude�

By a thermodynamic system we mean a system in which there are so many

relevant degrees of freedom that we cannot possibly keep track of all of

them� J�R� Waldram

You can view crystalizing as a combinatorial optimization problem� arrange the

atoms in a material to minimize the total potential energy� Crystalizing is often

performed with a cooling procedure called �annealing�� the theoretical modelling

of this process� applicable to arbitrary combinatorial spaces� is called �simulated

annealing��

Since work in simulated annealing sometimes appeals to intuitive extensions of

the physical process� I will describe the physics of annealing� I call this �thermo�

dynamic annealing� to distinguish it from the simulated annealing algorithm�

You can observe thermodynamic annealing from two perspectives� From a

macroscopic perspective� observable properties of a material change with tem�

perature and time� From a microscopic perspective� the kinetic energies� potential

energies� and positions of individual molecules change�

����� Macroscopic Perspective

In thermodynamic annealing� you rst melt a sample� then decrease the tem�

perature slowly through its freezing point� This procedure results in a physical
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system with low total energy� Careful annealing can produce the lowest possible

energy for a sample� e�g�� a perfect crystalline lattice�

When a system is cooled rapidly� called quenching� the result typically contains

many defects among partially�ordered domains�

The function T �t�� which relates time to temperature� is called the temperature

schedule� Usually� T �t� is monotonically decreasing�

A familiar example is silicon crystal manufacture� Annealing converts molten

silicon to cylindrical crystals� Using silicon wafers sliced from these cylinders�

engineers manufacture integrated circuits�

A material has reached thermal equilibrium when it has constant statistical dis�

tributions of its observable qualities� such as temperature� pressure� and internal

structure� After xing the temperature� perfect thermal equilibrium is guaran�

teed only after innite time� Therefore� you can only hope to attain approximate

thermal equilibrium� called quasi�equilibrium�

Temperature should be reduced slowly through phase�transitions� where signif�

icant structural changes occur� Condensing and freezing represent obvious phase�

transitions� Less obvious phase�transitions occur� ice� for example� has several

phase�transitions at di�erent temperatures and pressures� each marked by a shift

in molecular structure�

A system�s specic heat� denoted by H� is the amount of energy absorbed per

temperature change� H may vary with temperature� When the H is large� energy

is usually being absorbed by radical structural changes in the system� Increases in
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specic heat often accompany phase�transitions� The specic heat is given by

H �
�C

�T
� �����

where �C is the change in equilibrium energy and �T is the change in temperature�

In nite time quasistatic processes� which are closely related to annealing pro�

cesses� maximum order is obtained by proceeding at constant thermodynamic

speed �NSA���� The thermodynamic speed� v� is related to temperature and spe�

cic heat by

v � �
p
H

T
� dT
dt
� �����

Thermodynamic speed v measures how long it takes to reach quasi�equilibrium�

Consider a system with constant specic heat regardless of temperature� such

as a perfect gas� A temperature schedule which maintains quasi�equilibrium is

ln jT �t�j � � vp
H

t! a �����

or

T �t� � e�vt�
p
H�a� ���	�

where a is a constant� This is precisely the temperature schedule used in many

implementations of simulated annealing �KCV���� and in the self�a�ne �fractal�

annealing examples analyzed in x	�
�

When H varies with T � maintaining quasi�equilibrium requires an adaptive

temperature schedule� Adaptive schedules slow temperature reductions during

phase�transitions�

�	



����� Microscopic Perspective

Statistical mechanics represents the energy of a multi�body system using a

state vector operator� called a Hamiltonian �Sin���� In combinatorial optimization

problems� the cost function has a comparable role�

Annealing seeks to reduce the total energy �e�ectively� the total potential en�

ergy� in a system of interacting microscopic states� The position and velocity

of each pair of molecules� participating in the multi�body interaction expressions

of a Hamiltonian� contribute to the system energy� Hamiltonians� like the cost

functions of optimization problems� often exhibit the property that a particular

microscopic state change contributes to bringing the total system energy to a local

minimum� but not to the global minimum�

The Hamiltonian for the total energy of a thermodynamic system is shown in

equation ����

H�p� x� �X
i

p�i ��mi ! ��x�� x�� � � �� �����

Here� pi is the momentum vector� mi is the mass� and xi is the position of the ith

particle� H�p� x� includes both the kinetic energy of each component� p�i ��mi� and

the total potential energy in the system� ��x�� x�� � � ��� Physical congurations Si

of the system have an associated energy Ci� which is an eigenvalue of H�p� x��

By the rst law of thermodynamics� total energy in a closed system is a con�

stant� Therefore H�p� x� is a constant�

At the microscopic level� an individual particle�s energy level exhibits a prob�
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ability distribution dependent on the current temperature T � At thermal equilib�

rium� the probability that a component will be in its ith quantum state is shown

in Equation ��
� the Boltzmann probability distribution�

�i �
e�Ci�kTP
j e
�Cj�kT � ���
�

where k is Planck�s constant and Ci is the energy in state Si�

Note that the values of Ci depend on the positions of the particles in the system�

according to the ��x�� x�� � � �� term of Equation ���� That dependency makes exact

computer simulations of the microscopic states in large systems impractical�

An approximate equilibrium simulation algorithm� which has achieved success�

is called Monte�Carlo simulation or the Metropolis method �MRR���� The algo�

rithm works as follows� There are n interacting particles in a two�dimensional

space� The state of the system is represented by s � �s�� � � � � sn���� where si is the

position vector of particle i� Place these particles in any conguration� Now move

each particle in succession according to this method�

s�i � si ! �	 �����

where s�i is the trial position� si is the starting position� � is the maximum allowed

displacement per move� and 	 is a pseudo�random vector uniformly distributed

about the interval ���� ��� ���� ���

Using the Hamiltonian� calculate the change in energy�  � which would result

from moving particle i from xi to x
�
i� If  � �� accept the move by setting xi to x�i�
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If  
 �� accept the move with probability e����kT �� If the move is not accepted�

xi remains as before� Then consider particle i! � mod N �

Metropolis showed that by repeated application of this procedure� the proba�

bility distributions for individual particles converge to the Boltzmann distribution

���
�� greatly simplifying equilibrium computations�

Using Markov analysis with the Metropolis method� you can show that the sys�

tem escapes local energy minima� expressed in the Hamiltonian� by hill�climbing�

if the system is brought close to thermal equilibrium before reducing the temper�

ature� From a microscopic perspective� that is the goal of the annealing process�

Convergence cannot be guaranteed unless thermal equilibrium is reached�

but one cannot guarantee thermal equilibrium in nite time� This also holds for

simulated annealing� To think about convergence behavior in a Markov sense�

consider a discretized state space� where N particles can occupy M locations� If

the particles are distinguishable and can share locations� there are MN states�

A single pass of the Metropolis algorithm through all the particles can be

represented by a constant state�space transition matrix A� when the temperature

is held xed� The steady state probability vector �� in

� � �A � ���� AA � � � � �����

where ���� is the initial state distribution� may not be reached in nite time� But

this steady state probability is precisely what is meant by thermal equilibrium� so

thermal equilibrium may not be reached in nite time�
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If A is ergodic�

� � lim
n���

���An� �����

where n is the number of trials �Kle���� So with longer equilibrating times� you

more closely approximate thermal equilibrium�

��� Alternatives to Simulated Annealing

Simulated annealing is an extremely general algorithm� as the variety of ap�

plication problems illustrates� Other general algorithms exist to solve the same

problems�

Genetic algorithms �CHM��� Dav��� start with a random population of so�

lutions� create new populations with �mixing rules�� and destroy bad members

based on a �tness function� �similar to simulated annealing�s cost function�� At

the end of the algorithm you choose the best solution in the population� Genetic

algorithms do not lend themselves to theoretical understanding� there are no guar�

antees� even for exponential execution time� except for specic problems �GS����

However� parallel genetic algorithms have been used for some traditional annealing

problems� including circuit placement �KB����

Other general algorithms include branch�and�bound and related exhaustive

techniques� which are guaranteed to nd an optimal answer� though not neces�

sarily in an acceptable time �HS���� Comparison of branch and bound against

simulated annealing for network optimization is described in various unpublished
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technical reports� Branch and bound on realistic networks failed to produce results

in acceptable times� while simulated annealing succeeded �Sti�	��

Some algorithms perform better than simulated annealing at specic tasks�

such as relaxed linear programming for wire�routing �Rag���� min�cut for graph

partitioning �LD��� JAM���� and the Karmarkar�Karp heuristic for number par�

titioning� Other special�purpose algorithms maintain an uneasy superiority� with

new move�generators or temperature schedules bringing simulated annealing back

into the lead� and then some new modication to the special�purpose algorithm

beating it again� etc� This has been the case for the satisability problem �Spe����

Banerjee has documented many parallel algorithms specically relevant to VLSI

problems �Ban�	��

Simulated annealing appears to be well�entrenched� if only because it tolerates

modied cost�functions with minimal disruption�

��� Dissertation Outline

Allowing cost�function inaccuracies in simulated annealing can improve its

speed� This dissertation addresses two open analytic problems� what cost�function

accuracy is required for an acceptable result# Does the execution time have to

change to compensate for these inaccuracies#

This chapter discussed simulated annealing and circuit placement� Simulated

annealing is a combinatorial optimization algorithm�a modication of the greedy

algorithm� Thermodynamic annealing is the process of cooling a material through
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its freezing point to regularize its internal structure� Understanding thermody�

namic annealing helps explain simulated annealing�

Simulated annealing applies to a wide variety of applications� Its tolerance of

di�erent cost�functions and move�generation methods contributes to its common

use for circuit placement� Circuit placement has so many variations that it is

di�cult to create a general placement algorithm except with something broadly

applicable� like annealing�

Chapter � surveys the eld of parallel simulated annealing� arranging di�erent

parallel techniques into a taxonomy� It concludes that asynchronous techniques

show good performance� but errors must be adequately controlled� That chapter

appeared previously as a chapter of Emergent Computation �Gre��b��

Chapter � describes my experiments using a parallel asynchronous algorithm

for gate�array placement� I measured cost�function errors� �mobility�� and outcome

quality� Not surprisingly� larger errors worsened the outcome� The changes I made

in mobility seem to have had less e�ect than the errors I introduced� Parts of

this chapter appeared as a paper in the Proceedings of the ���� International

Conference on Supercomputing �GD����

Chapter 	 presents my e�orts to analytically resolve questions raised by my

experiments� Though I started this investigation with parallel annealing in mind�

I realized later that errors abound in common sequential annealing applications�

I show how they arise in both sequential and parallel situations� I assumed that

errors could be expressed in two forms� either as �range�errors�� where the cost�
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function can return a value in a xed range about the true cost� or as �Gaussian

errors�� where the cost�function is a Gaussian function with the true cost as its

mean�

Errors a�ect constant�temperature properties of simulated annealing� including

the equilibrium cost and the conductance� I show how these properties are a�ected

by both error forms� The key problem for me� however� was discovering how errors

a�ect the speed of normal annealing applications� which do not operate at constant�

temperature�

On general combinatorial problems� simulated annealing has been proven to

operate in exponential time� For practitioners this is hardly exciting� all combi�

natorial optimization problems can be performed in exponential time by simple

enumeration� However� since a large body of theoretical work relies on this result�

and since it applies to any combinatorial problem� I investigated� Using the general

�and slow� T �t� � c� log t temperature schedule on any space satisfying the usual

constraints� I show that annealing will converge if range�errors are conned to a

constant factor of temperature�

Most simulated annealing temperature schedules� however� are similar to the

constant specic�heat form ������ namely T �t� � e�ct�d� or as it is usually described

in computer science� T �t� � c T �t � ��� This is the �geometric temperature

schedule�� Few have attempted to create analytic models for problems that can

be annealed with geometric schedules� One is Greg Sorkin� who modeled these

problems with self�a�ne functions �fractals� �Sor����
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Although it remains to be seen whether fractals are a good models for typ�

ical annealing problems� they provided the closest analytic model I knew that

resembled common annealing problems� such as circuit placement� I show that in

fractals� conning range�errors to a constant factor of the temperature� and using a

geometric temperature schedule extended to account for conductance and quality

changes� will guarantee the same quality outcome as without errors�

The range�error equilibrium results in Chapter 	 rst appeared in ���� Pro�

ceedings of the International Workshop on Layout Synthesis �Gre��a�� The range�

error and Gaussian conductance results rst appeared in �Gre��a�� The analysis

of �� log t�based schedules rst appeared in ���� Proceedings of the IMACS Inter�

national Congress on Mathematics and Computer Science �Gre��c�� The rest has

not been previously published�

Chapter � presents the conclusions that can be drawn from this work� My

practical results apply to self�a�ne cost�functions� but in most cases it is di�cult

to determine whether a cost�function is self�a�ne� Sorkin presents some techniques

for analyzing these spaces in �Sor���� but these techniques are often di�cult and

inconclusive� As with almost every annealing theory applied in practice� annealers

should use my results as a guide rather than a mandate�

Errors appear in many annealing applications� either from a cost�function ap�

proximation or from parallelism� When errors appear� annealers can obtain the

same quality results they would obtain otherwise� if they establish and limit the

errors according to the results I present� Annealers may choose to accept lower
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outcome quality rather than nding a way to limit errors� If so� they can use these

results to help predict the outcome quality�
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CHAPTER �

Parallel Techniques

Since a new state contains modications to the previous state� simulated an�

nealing is often considered an inherently sequential process� However� researchers

have eliminated some sequential dependencies� and have developed several parallel

annealing techniques� To categorize these algorithms� I ask several questions�

�� How is the state space divided among the processors#

�� Does the state generator for the parallel algorithm produce the same neigh�

borhood as the sequential algorithm# How are states generated#

�� Can moves made by one processor cause cost�function calculation errors in

another processor# Are there mechanisms to control these errors#

	� What is the speedup# How does the nal cost vary with the number of

processors# How fast is the algorithm� when compared to an optimized

sequential program#

I will show that the e�ciency of parallel processing is a mixed bag� Some ex�

periments show a decrease in speed as processors are increased� This is caused by

increased interprocessor communication and synchronization costs� Others show
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�superlinear speedup�� meaning that the speed per processor increases when pro�

cessors are added�

When considering published speedup comparisons in simulated annealing� pro�

ceed cautiously� particularly when superlinear speedups appear� Simulated anneal�

ing researchers frequently see this suspicious property�

Three causes explain most superlinear speedup observations� First� changes

to state generation wrought by parallelism can improve annealing speed or qual�

ity �GD���� If this happens� one can x the sequential algorithm by mimicking

the properties of the parallel version �JB��� FLW�
�� Second� a speed increase

might come with a solution quality decrease �DKN���� That property holds for

sequential annealing� as well �Lam���� Third� annealing experimenters often begin

with an optimal initial state� assuming that high�temperature randomization will

annihilate the advantage� But if the parallel implementation degrades state�space

exploration� high�temperature may not totally randomize the state� the parallel

program� then� more quickly yields a better solution �BB����

Knowledge of such pitfalls can help avoid problems� Superlinear speedup in

parallel algorithms� such as parallel simulated annealing� should raise a red �ag�

altered state exploration� degraded results� or inappropriate initial conditions may

accompany it�

I found only one comparison of parallel and sequential annealing algorithms

which controlled the outcome quality �CRS��� by changing the temperature sched�

ule and move�generation functions� As I will show in Chapter 	� an algorithm
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can trivially improve its speed by producing a lower�quality result� Even recent

comparisons fail to account for this �KCP�	�� Because experiments have been so

poorly controlled� this chapter is more qualitative than quantitative�

Parallel Simulated Annealing

Synchronous Asynchronous

Serial−Like Altered Generation

Functional Decomposition
Simple Serializable Set
Decision Tree

Spatial Decomposition
Shared State−Space
Systolic

Spatial Decomposition
Shared State−Space

Figure ���� Parallel Simulated Annealing Taxonomy

I have categorized parallel simulated annealing techniques in a taxonomy of

three major classes shown in Figure ���� serial�like� altered generation� and asyn�

chronous� Call an algorithm synchronous if adequate synchronization ensures that

cost function calculations are the same as those in a similar sequential algorithm�

Two major categories� serial�like and altered generation� are synchronous algo�

rithms� Serial�like convergence algorithms preserve the convergence properties of

sequential annealing� Altered generation algorithms modify state generation� but

compute the same cost function� Asynchronous algorithms eliminate some syn�

chronization and allow errors to get a better speedup� possibly causing reduced

outcome quality�

Table ��� shows the criteria used to distinguish parallel annealing categories�

comparing them to accurate serial annealing�
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Category Cost Generate
Serial�Like � C � G
Altered Generation � C 	� G
Asynchronous 	� C #
Serial� Estimated Cost 	� C � G

Table ���� Comparison with Accurate�Cost Serial Annealing

Each category makes a trade�o� between cost�function accuracy� state genera�

tion� parallelism or communication overhead�

��� Serial�Like Algorithms

Three synchronous parallel algorithms preserve the convergence properties of

sequential simulated annealing� functional decomposition� simple serializable set�

and decision tree decomposition� These are serial�like algorithms�

����� Functional Decomposition

Functional decomposition algorithms exploit parallelism in the cost�function f �

In the virtual design topology problem� for example� the cost function must nd the

shortest paths in a graph� One program computes that expensive cost function

in parallel� but leaves the sequential annealing loop intact �BG��a�� Published

reports provide no speedup information�

Another program evaluates the cost function for VLSI circuit placement in

parallel �KR���� Simultaneously� an additional processor selects the next state�

Figure ���� Algorithm FD� shows the details�
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�� m� � select random state�
�� loop for i� � to 

�� m� m��
	� parallel block begin
�� m� � generate� m ��

� E� � block�length�penalty� m ��
�� E��� � overlap for a�ected circuit c� before move�
�� � � � E��j � overlap for a�ected circuit cj before move�
�� E��� � overlap for a�ected circuit c� after move�
��� � � � E��j � overlap for a�ected circuit cj after move�
��� E��� � length change for a�ected wire w��
��� � � � E��k � length change for a�ected wire wk�
��� end parallel block�
�	�  � E� ! �E��� !� � �! E��j�� �E��� !� � �! E��j� ! �E��� !� � �! E��k��
��� if accept�  � T � then
�
� parallel block begin
��� update overlap values�
��� update blocks and circuits�
��� update wire w��
��� � � � update wire wk�
��� end parallel block�
��� end if�
��� recompute T � evaluate stop criteria� etc�
�	� end loop�

Figure ���� Algorithm FD� Functional Decomposition for VLSI Placement

One can obtain only a limited speedup from Algorithm FD� Ideally� the parallel

section from line 	 to line �� dominates the computation� each process executes in

uniform time� and communication requires zero time� One can then extract a max�

imum speedup of �!�j! k� where j is the average circuits a�ected per move� and

k is the average wires a�ected per move� Researchers estimate a speedup limita�

tion of ��� based on experience with the VLSI placement program TimberWolfSC

�SLS����
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Since cost�function calculations often contain only ne�grain parallelism� com�

munication and synchronization overhead can dominate a functional decomposi�

tion algorithm� Load�balancing poses another di�culty� Both factors degrade

the maximum speedup� making functional decomposition inappropriate for many

applications�

����� Simple Serializable Set

If a collection of moves a�ect independent state variables� distinct processors can

independently compute each  without communicating� Call this a �serializable

set��the moves can be concluded in any order� and the result will be the same�

The simplest is a collection of rejected moves� the order is irrelevant� the outcome

is always the starting state�

The simple serializable set algorithm exploits that property �KR���� At low

annealing temperatures� the acceptance rate �the ratio of accepted states to tried

moves� is often very low� If processors compete to generate one accepted state�

most will generate rejected moves� All the rejected moves and one accepted move

can be executed in parallel�

Figure ���� Algorithm SSS� shows this technique �BAM���� P processors grab

the current state in line �� Each processor generates a new state at line �� If the

new state is accepted �line �� and the old state has not been altered by another

processor �line ���� the move is made� Otherwise the move is discarded�

If the acceptance rate at temperature T is ��T �� then the maximum speedup of
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�� shared variable s� semaphore sema�
� � �

�� parallel loop for i� � to P �
�� loop for j � � to 

	� wait� sema ��
�� sold � s�

� signal� sema ��
�� hs�� i � generate� sold ��
�� if accept�  � T � then
�� wait� sema ��
��� if sold � s then
��� s� s��
��� T � new T �
��� end if�
�	� signal� sema ��
��� end if�
�
� change T � evaluate stop criterion� etc�
��� end loop�
��� end parallel loop�

Figure ���� Algorithm SSS� Simple Serializable Set Algorithm

this algorithm� ignoring communication and synchronization costs� is ����T �� At

high temperatures� where the acceptance rate is close to �� the algorithm provides

little or no benet� But since most annealing schedules spend a majority of time

at low temperatures� Algorithm SSS can improve overall performance�

Algorithm SSS has limitations� Some recent annealing schedules maintain ��T �

at relatively high values� throughout the temperature range� by adjusting the gen�

eration function� Lam�s schedule� for instance� keeps ��T � close to ��		 �Lam����

With that schedule� Algorithm SSS provides a maximum speedup of approximately

���� regardless of the number of processors�
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����� Decision Tree Decomposition

A third serial�like algorithm� called decision tree decomposition� exploits par�

allelism in making accept�reject decisions �CEF���� Consider the tree shown in

Figure ��	a� If we assign a processor to each vertex� cost evaluation for each

suggested move can proceed simultaneously� Since a sequence of moves might be

interdependent �i�e�� not serializable�� however� we generate the states in sequence�
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reject accept
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2 3
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tm
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dt

dt

dt

dt

tm

tmt

tmt

1
2
3
4
5

... time

a� Annealing Decision Tree b� Functional Dependence

Figure ��	� Decision Tree Decomposition

Figure ��	b shows vertex dependencies� A vertex generates a move in time tm�

evaluates the cost in time te� and decides whether to accept in time td� Note that

vertex � cannot begin generating a move until vertex � generates its move and

sends it to vertex ��

A simple implementation results in predicted speedups of log� P � where P is the

number of processors� By skewing tree evaluation toward the left when ��T � � ����

and toward the right when ��T � � ���� researchers predict a maximum speedup of

�P ! log� P ��� �CEF����

In numeric simulations� however� the speedups fall �at� With �� processors
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and tm � �
te� the estimated speedup was 	��� Unfortunately� in VLSI placement

problems tm � te� and in traveling salesman problems tm  te� Setting tm close to

te leads to a speedup of less than ��� on �� processors� As a result� this approach

holds little promise for such applications� This was conrmed by later results

�Wit����

��� Altered Generation Algorithms

Even if a parallel annealing algorithm computes cost�functions exactly� it may

not mimic the statistical properties of a sequential implementation� Often� state

generation must be modied to reduce inter�processor communication� These al�

tered generation methods change the pattern of state space exploration� and thus

change the expected solution quality and execution time�

����� Spatial Decomposition

In spatial decomposition techniques� the algorithm distributes state variables

among the processors� and transmits variable updates between processors as new

states are accepted� Spatial decomposition techniques are typically implemented

on message�passing multiprocessors�

In synchronous decomposition� processors must either coordinate move gener�

ation and communication to avoid errors� or not generate moves that a�ect other

processors� state variables� These two techniques are cooperating processors and

independent processors� respectively�
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������� Cooperating Processors

A cooperating processor algorithm disjointly partitions state variables over the

processors� A processor that generates a new state noties other a�ected proces�

sors� Then� those processors synchronously evaluate and update the state� If a

proposed move could interfere with another in�progress move� the proposed move

is either delayed or abandoned�

One such program minimizes the number of routing channels �the slots where

wires lie� for a VLSI circuit �BB���� The cost is the total number of routing

channels that contain at least one wire� two or more wires can share the same

routing channel� if they don�t overlap�

The program rst partitions a set of routing channels across the processors of

an iPSC�� Hypercube� that processor assignment henceforth remains xed� Pro�

cessors proceed in a lockstep communication pattern� At each step� all processors

are divided into master�slave pairs� The master processor randomly decides among

four move classes�

Intra�displace The master and slave each move a wire to another channel in

the same processor�

Inter�displace The master processor moves one of its wires to a channel in the

slave processor�

Intra�exchange The master and slave each swap two wires in the same processor�
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Inter�exchange The master swaps a wire from one of its channels with a wire in

the slave�

Experiments indicate superlinear speedups� from ��� on � processors to ���� on

�
 processors� These apparently stem from a nearly�optimal initial state and more�

constrained parallel moves� making the reported speedups untenable� However� the

decomposition method itself is sound�

������� Independent Processors

In independent processor techniques� each processor generates state changes

which a�ect only its own variables� Under this system� a xed assignment of state

variables to processors would limit state�space exploration� and produce an inferior

result� The technique requires periodic state variable redistribution�

One such technique optimizes traveling salesman problems �AC���� A traveling

salesman problem �TSP� consists of a collection of cities and their planar coor�

dinates� A tour that visits each city and returns to the starting point forms a

solution� the solution cost is its total length�

Construct an initial state by putting the cities into a random sequence� the tour

visits each in order and returns to the rst city� Stretch this string of cities out like

a rubber band� and evenly divide the two parallel tracks among the processors� as

shown in Figure ���a� The state variables consist of the endpoints of each two�city

segment�

Each processor anneals the two paths in its section by swapping corresponding
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Figure ���� Rubber Band TSP Algorithm

endpoints� as shown in Figure ���b� After a xed number of tries in each processor�

the total path length is computed� and a new temperature and a shift count are

chosen� Each processor then shifts the path attached to its top left node to the

left� and the path attached to its bottom right node to the right� by the shift count�

as shown in Figure ���c� This operation redistributes the state variables� ensuring

that the whole state space is explored� Annealing continues until it satises the

stopping criterion�

In one experiment� the �� processor versus � processor speedup ranged from

about � for a �	� city TSP� to ��� for a ���� city TSP� Unfortunately� a single
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processor example was not discussed� The paper does not show nal costs� �

nal cost probably increases as the number of processors increases� Other spatial

decomposition techniques exhibit similar behavior and speedups �FKO��� DN�
��

����� Shared State�Space

Shared state�space algorithms make simultaneous� independent moves on a

shared�memory state�space� no cost�function errors can occur�

One such algorithm optimizes VLSI gate�array placement �DKN���� Changes

in the state generation function� resulting from the locking of both circuits and

wires� caused poor convergence� Maximum speedup was ��� for �
 simulated RP�

processors� solving a uniform ��� grid problem� Improving the parallel algorithm�s

convergence would reduce its speedup below ����

A similar algorithm for minimizing the equal partition cut�set �see x������ ob�

tained a dismal speedup close to � on �
 processors �Dur����

Another shared state�space algorithm constructs con�ict�free course timeta�

bles �Abr���� Before evaluating a move� the algorithm must lock the instructors�

courses and rooms for two time periods� then swap them� If the locks con�ict with

an in�progress move� the algorithm abandons them and generates another move�

Speedup was compared against an optimized sequential algorithm� With � proces�

sors� a speedup of ��� was obtained in scheduling ��� class periods� while 
�� was

obtained in scheduling ���� class periods�
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����� Systolic

The systolic algorithm exploits the property that simulated annealing brings a

thermodynamic system toward the Boltzmann distribution �ABH�
� MRR����
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Figure ��
� Systolic Algorithm

Suppose there are P processors� and the algorithm maintains the same temper�

ature for a sequence of N generated states� We would like to divide these moves

into P subchains of length L � P�N � and execute them on di�erent processors�

Figure ��
 shows a corresponding data �ow graph for this decomposition�

At any PICK node on processor p� the algorithm must decide between state

s�n���p� computed by processor p at temperature Tn��� and state s�n�p��� computed

by processor p� � at temperature Tn� It makes the choice according to the Boltz�

mann distribution� the relative probability of picking s�n���p� is

	� �
�

Z�Tn���
e	f�s���f�s�n���p��
�Tn�� �����
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and the relative probability of picking s�n�p��� is

	� �
�

Z�Tn�
e	f�s���f�s�n�p����
�Tn �����

where S is the entire state space and s� is a minimum cost state� Z�T � is the

partition function over the state space� namely

Z�T � �
X
s�S

e�f�s��T �����

The PICK node then selects s�n���p� and s�n�p��� with probabilities

p�s�n���p�� �
	�

	� ! 	�
� p�s�n�p���� �

	�
	� ! 	�

���	�

If you don�t know the minimum cost� you can�t evaluate f�s��� A lower bound

must su�ce as an approximation� Choosing a lower bound far from the minimum

cost will increase execution time or decrease solution quality �Lam����

The partition function� Z� requires the evaluation of every state conguration�

The number of state congurations is typically exponential in the number of state

variables� making exact computation of Z unreasonable�

Instead� the systolic method uses an approximate Z� In the temperature regime

where the exponential function dominates� 	� and 	� are almost completely deter�

mined by their numerators in Equations ��� and ���� The in�uence of Z�T � thus

becomes small� and it can be approximated by the Gaussian distribution�

How does the algorithm perform# With � processors operating on a �� � ��

uniform grid of cities� the systolic algorithm obtained a mean path�length of ����

at a speedup of about 
��� while the sequential algorithm obtained an average of

��



about ������ Accounting for the less optimal parallel result� the e�ective speedup

is something less than 
���

��� Asynchronous Algorithms

Without su�cient synchronization� di�erent processors can simultaneously read

and alter dependent state�variables� causing cost�function calculation errors� Such

algorithms are asynchronous� Imprecise cost�function evaluation accelerates se�

quential simulated annealing under certain conditions �GM��� Gro���� a similar

e�ect accompanies asynchronous parallel simulated annealing�

These algorithms use a method related to chaotic relaxation�processors oper�

ate on outdated information �CM
��� Since simulated annealing randomly selects

hill�climbing moves� it can tolerate some error� under the right conditions� anneal�

ing algorithms can evaluate the cost using old state information� but still converge

to a reasonable solution� This property holds for genetic algorithms� as well �JG����

Error tolerance provides a great advantage in multiprocessing� when proces�

sors independently operate on di�erent parts of the problem� they need not syn�

chronously update other processors� A processor can save several changes� then

send a single block to the other processors� The processor sends less control in�

formation and compresses multiple changes to a state variable into one� reducing

total communication tra�c� In addition� if updates can occur out�of�order� syn�

chronization operations are reduced� Asynchronous algorithms require a minimum

synchronization� two processors acting independently must not cause the state to
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become inconsistent with the original problem�
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Figure ���� Cost�Function Errors in Spatial Decomposition

Figure ��� shows how errors arise in a spatially decomposed traveling salesman

problem� In the gure� variables a� and a� denote the endpoints of edge a� The

simulated annealing algorithm swaps endpoints to generate a new state� The

algorithm partitions the cities over two processors� A processor may only swap

endpoints that point to its vertices� ensuring problem consistency� However� to

reduce synchronization time� processors do not lock edges while they evaluate the

cost�function�

While processor � considers swapping endpoint a� with b�� processor � considers

swapping endpoint a� with b�� Processor � sees a path�length change for its move

of  � � ���p��  ������� Processor � also sees   ������� for its move�

Processor � makes its move� by swapping a� and b�� Now� processor � makes

its move� thinking its   ������ �a good move� when the e�ect is   !�����
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�a bad move�� At low temperatures� the error will degrade the nal result unless

corrected by a later move� So� simulated annealing does not have an unlimited

tolerance for errors�

Cost�function errors usually degrade convergence quality� when all other fac�

tors are xed� note the contrast with altered state generation� For example� ex�

periments have shown that VLSI placement quality decreases as errors increase

�GD��� JD����

Several authors have conjectured that annealing properties might be preserved

when the errors are small� Experimental evidence bears this out �GD��� DKN���

BJ�
� Gro�
� RSV���� However� you can easily construct a problem which con�

verges well under sequential simulated annealing� but will likely converge to a bad

local minimum in an asynchronous program�

Processor 0 proposes x <- x-1

Processor 1 proposes y <- y-1

Resulting state

x+y

f(x+y)

s = (x,y)
C(s) = f(x+y)

Figure ���� Errors Can Cause Annealing Failure

Consider a system with two state variables x and y� so some state s � hx� yi �
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S� Let the cost�function be f�x! y�� where f is the curve in Figure ���� Now put

x and y on two separate processors� Each processor proposes a move� processor �

generates x� x� �� while processor � generates y � y� �� In both cases�  � ��

so each move will be accepted�

The cost�function error causes the state to jump to a high local minimum� At

low temperatures� the annealing algorithm probably will not escape this trap�

����� Asynchronous Spatial Decomposition

Asynchronous spatial decomposition methods� like the synchronous methods

in x������ partition state variables across di�erent processors� However� in asyn�

chronous algorithms each processor also maintains read�only copies of state vari�

ables from other partitions�

When a processor evaluates a new state� it uses only local copies of state vari�

ables� In some programs� when a move is accepted the new state information

is immediately sent to other processors �BJ�
�� In other programs� a processor

completes a xed number of tries� called a �stream�� before transmitting the mod�

ications �GD��� JD���� Longer streams increase the execution�to�communication

ratio� gaining a speedup� but they also increase calculation errors� reducing the

solution quality�
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������� Clustered Decomposition

The clustered decomposition technique solves two simultaneous optimization

problems� the specied target problem and assigning the state variables to proces�

sors�

In one example� the target problem is VLSI macro�cell circuit placement� and

the assignment problem is circuit partitioning �CRS���� Overlap penalties in the

VLSI cost�function generate the largest errors�when two circuits owned by dif�

ferent processors are moved to the same empty location� neither processor will see

an overlap� but the overlap error might be huge� This leads to a clustering prob�

lem� divide state variables �circuits� equally among the processors� while putting

dependent variables �adjacent or connected circuits� on the same processor�

Compute the assignment cost�function� for VLSI macro�cell placement� as fol�

lows� Let A be the set of circuits� let A � fA�� � � � � APg be the partition of A over

P processors� let a be a circuit�s vector center and let jaj be its scalar area� For

each processor p� you can compute the center of gravity Xp of its partition Ap

Xp �
�P

a�Ap
jaj

X
a�Ap

a � jaj �����

and its inertial moment

$p �
X
a�Ap

jja�Xpjj� � jaj ���
�

The assignment cost�function for partition A is

fa�A� � wa �
PX
i��

$i �����
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where wa is a weighting factor�

Experiments used the same temperature for both partitioning and placement�

independent temperature schedules would probably improve the result� A �� cir�

cuit problem� running on an � processor� shared�memory Sequent ����� reached a

speedup of 
�	 against the same algorithm running on a single processor�

Clustering improved convergence� Express a result�s excess cost as E�nal�Emin�

where E�nal is the result�s cost� and Emin is the best solution known �presumably

close to optimal�� Clustering reduced the excess cost in a ��� circuit� �
� wire

problem by about ��"�

������� Rectangular Decomposition

A simpler approach� rectangular decomposition� tries to accomplish the same

goals� It divides the grid of a gate�array placement problem into disjoint rectan�

gles� then shifts the boundaries after each stream �GD���� At low temperatures�

interdependent state variables typically share a rectangle�

Di�erent variants were tried� placing restrictions on the minimum width of a

rectangle and �fuzzing� the rectangle boundaries� All rectangular decomposition

schemes produced small errors and converged close to the minimum� In contrast�

random assignment of state variables to processors� on identical problems� pro�

duced greater errors and converged to a much higher nal cost �JD����

One rectangular decomposition experiment xed the number of generated states

in a block of PN tries� where N is the stream length and P is the number of

		



processors� Figure ��� displays the resulting errors� The error value is �s � j �

 P j� where  is the actual cost change after completion of a stream� and  P is

the sum of the apparent cost changes observed by the processors� Increasing P

also increases �s� as one might expect�

Figure ���� Spatial Decomposition� �
 Tries per Block

A more detailed discussion of these experiments appears in Chapter ��

����� Asynchronous Shared State�Space

Asynchronous shared state�space algorithms keep all state variables in shared

memory� Processors competitively lock state variables� make moves� and unlock�

Unlike synchronous algorithms� processors need not lock all a�ected state variables�
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they need only lock those variables required for problem consistency�

One experiment compared synchronous and asynchronous algorithms for VLSI

gate�array placement �DKN���� Under a simulated RP� environment� three meth�

ods were tried� Method A� a synchronous shared state�space algorithm� is de�

scribed in x������ Each processor locked two circuits and any attached wires before

attempting a swap�

In method B�� an asynchronous algorithm� processors lock only the two circuits

in the proposed move� and calculate the new wire length with possibly�changing

information� Each processor maintains a local copy of the histogram variables �the

wire�congestion information described in x����	���� A move updates only the local

histogram� at the completion of a stream� each processor corrects its histogram

with global state information�

Method B� operates like B�� except that it never corrects the local histograms�

Thus� histogram information becomes progressively outdated as the temperature

falls�

Method B� converged well with a maximum of � processors� Method B� con�

verged imperfectly� but surprisingly it converged better than a random spatial

decomposition technique �JD����

Using extrapolated simulation measurements for a ��� circuit placement prob�

lem running on �� processors� researchers estimated a speedup of about 	� for

Method A� and �� for Method B� and B� �DKN����

Another experiment compared synchronous and asynchronous shared state�

	




space algorithms for the equal partition cut�set problem �Dur���� Given a graph

with an even number of vertices� such algorithms partition the vertices into two

equal sets� and minimize the number of edges which cross the partition boundary�

The synchronous algorithm locked both vertices and edges� while the asynchronous

algorithm locked only vertices�

On a ��� vertex graph� the synchronous algorithm ran more slowly than a

sequential implementation� except at �
 processors where the speedup was close to

�� The asynchronous algorithm ran faster than the sequential algorithm� yielding

�
�processor speedups from � on a graph with mean vertex degree ��� to �� on a

graph with mean vertex degree ���

These experiments indicate that asynchronous execution may be benecial in

simulated annealing�

��� Hybrid Algorithms

Hybrid algorithms recognize that di�erent schemes may be more appropriate at

di�erent temperatures� This section provides only a cursory review� since previous

sections provided algorithmic details�

����� Modi	ed Systolic and Simple Serializable Set

One hybrid combines a modied systolic algorithm and a simple serializable set

algorithm �BAM���� In the modied systolic algorithm� independent processors

copy the current state� then complete a stream of moves at the same temperature�
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The PICK operation from Figure ��
 on page �� chooses among the results� as per

Equations ��� and ���� Equal temperatures for PICK simplify the computations�

At high temperatures� where most moves are accepted� Algorithm SSS provides

little benet�here only the systolic algorithm is used� As lower temperatures re�

duce the acceptance rate� the program combines Algorithm SSS with systolic�

Finally� at extremely low acceptance rates� the program uses Algorithm SSS ex�

clusively�

Researchers claim this hybrid is slightly faster than the systolic algorithm alone

�ABH�
��

����� Random Spatial Decomposition and Functional Decomposition

Another approach combines asynchronous spatial decomposition with func�

tional decomposition �JR���� This program randomly distributes the state vari�

ables across processors in an iPSC hypercube� to perform VLSI macro�cell place�

ment�

With a �� circuit problem� on a �
 processor iPSC� the algorithm obtained

speedups of between 	 and ���� Considering the small problem size and the

message�passing architecture� the speedup appears very good�

����� Heuristic Spanning and Spatial Decomposition

One implementation uses heuristic spanning� a non�simulated annealing tech�

nique� and asynchronous rectangular decomposition to perform VLSI placement
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�RSV����

The heuristic spanning algorithm chooses several random starting states� and

iteratively improves each� For the high�cost regime� heuristic spanning shows better

convergence behavior than simulated annealing�

In the low cost regime� rectangular decomposition renes the state space to

a lower nal cost than heuristic spanning could achieve� The rectangular decom�

position method showed a speedup of 	�� on � processors� and an extrapolated

speedup of ��� on �� processors� Using the hybrid technique� researchers esti�

mate speedups of ����� on �� processors� when compared to a standard simulated

annealing algorithm�

����� Functional Decomposition and Simple Serializable Set

In another hybrid algorithm� functional decomposition operates at high temper�

atures� and simple serializable set operates at low temperatures �KR���� The poor

behavior of Algorithm SSS at high temperatures justies a di�erent algorithm�

In this early work� researchers sought to avoid convergence problems by using

only serial�like algorithms�little was known of altered�generation or asynchronous

algorithms� On a ��� circuit gate�array placement problem� they achieved a max�

imum speedup of ���� on a 	 processor VAX �����	�
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��� Summary

I categorized parallel annealing techniques into serial�like� altered generation�

and asynchronous algorithmic classes� Comparisons of these techniques have been

limited �GD��� DKN��� KR��� RSV����

Based on this survey� it appears that asynchronous and altered generation

algorithms have provided the best overall speedup� while one serial�like technique�

simple serializable set� has been incorporated advantageously at low temperatures�

Although the asynchronous algorithms show promising speedups� the experi�

ments described here make no appeals to theory� This problem is rectied in Chap�

ter 	� where we show how asynchronous algorithms can be controlled to achieve

the same outcome quality found in sequential algorithms�
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CHAPTER �

Experiment

In traditional simulated annealing� the algorithm must ensure that it always

creates feasible solutions to the original problem� and that it evaluates the cost

change accurately� Asynchronous simulated annealing relaxes the second require�

ment� tolerating some error in the computed cost�

This error tolerance provides an advantage in multiprocessing� when several

processors proceed independently on di�erent parts of the problem� they need not

synchronously update state information in other processors� A processor can save

several updates� then send them in a block to the other processors� The processor

sends less control information and compresses multiple moves for a circuit into

one� This reduces total communication tra�c� With a few limitations� updates

can occur out�of�order� decreasing synchronization operations�

A later chapter will determine how much error can be tolerated to achieve a par�

ticular goal� This chapter describes my early experiments on simulated annealing�

showing empirically how errors a�ect the outcome quality of a circuit�placement

problem� I show that errors can be limited by

�� limiting the number of processors assigned to the problem�
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�� changing the way the problem is decomposed�

�� increasing the frequency of interprocessor communication�

��� Background

Quantifying the error tolerance of simulated annealing has been a di�cult the�

oretical issue� so most published conclusions are based on experiment� Relying on

empirical evidence� Jayaraman claims that simulated annealing can tolerate cost

function errors of ��" with limited e�ect on convergence �JD���� However� that

foregone conclusion depends on the cost�function� An obvious modication of the

cost�function in Figure ���� with ��" error� would generate a bad outcome under

simulated annealing�

Grover states that the largest tolerable error is about half the current annealing

temperature �Gro�
�� but this depends on the structure of the move�space� Rose et

al suggest that error reduction is extremely important at high�temperatures� but

less important at lower temperatures �RSV���� Chapter 	 contradicts this notion�

This chapter expands on my experiments� mentioned earlier in x�������� I

wanted to see how di�erent partitionings of a gate�array placement problem might

a�ect measurable properties of asynchronous parallel simulated annealing� Fur�

thermore� I hoped these experiments would suggest a relationship between the

properties and the quality of the outcome� In particular� my experiments illus�

trate the behavior of errors at di�erent temperatures� and show how parallelism
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a�ects those errors�

Furthermore� di�erent partitioning schemes and temperatures change how the

algorithm explores the state space� To try to capture this notion� I measured

�circuit mobility�� the average Manhattan distance a circuit moves when accepted�

Circuit mobility in these experiments relates to the more rigorous notion of �mixing

speed�� discussed and used in Chapter 	� Similar notions have been explored in

other works� from White�s early work on �move scales� �Whi�	� to Lam�s attempts

to combine an adaptive temperature schedule with an adaptive move�generation

algorithm �Lam��� SLS����

My experiments show that both parameters�errors and circuit mobility�

a�ect the outcome quality in simulated annealing�

����� Spatial Decomposition

The �spatial decomposition� algorithm divides the gate�array grid into mutu�

ally disjoint partitions� either randomly �CRS�
� JD��� or using a xed pattern

�Kli���� and assigns each partition to a di�erent processor� A processor randomly

selects two circuits within its partition� calculates the cost�function assuming the

circuits were swapped� and decides whether to swap the circuits� No locking is

required in these algorithms� because the processors operate on disjoint sets of

circuits� A processor may complete several swaps� in a �stream�� before sending

the updated information to a common database�

Each processor acts independently on its partition� assuming that circuits in
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other partitions are stationary� Cost�function errors result because circuits in other

partitions are not stationary�they are being modied by di�erent processors� Af�

ter a number of tries� the processes update a global map� the controlling task

repartitions the grid� and the process repeats� Using a longer stream �allowing

more swaps between updates� increases calculation errors� A successful algorithm

must change partition boundaries between streams� otherwise limitations on state

space exploration preclude a good outcome�

����� Experimental Work

This chapter explores four new rectangular spatial decomposition schemes� The

approach divides a circuit grid into rectangular regions�the algorithms di�er in

where the boundaries can fall� One method� Sharp converges better than the

others� In one example� the outcome placement quality of parallel Sharp was

higher than standard sequential approaches� Here the partitioning method created

a better generate function than was found in the sequential algorithm�

These experiments can be interpreted in terms of the increased circuit�mobility

and decreased cost�function errors that occur with the rectangular partitioning

approaches� Chapter 	 conrms this analytically�

��� The Algorithm

This spatial decomposition algorithm rst assigns the circuits in a VLSI circuit

to random locations on a grid�
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Figure ���� Parallel Execution Model

Figure ��� shows the parallel execution model� It begins with a supervisor

process decomposing the grid into mutually disjoint partitions� All processes then

proceed independently to complete a �stream� of trial moves on their respective re�

gions� Each process copies the entire circuit map to its local memory�I optimized

this step by copying only changed circuits to the local memory�

A process randomly chooses two circuits within its region� If the two circuits

have Manhattan distance greater than �� the process repeatedly retries� randomly

selecting another two circuits until it nds two at Manhattan distance less than 	�

It then calculates the cost function based on its local copy of the circuit map�

Circuits local to the partition accurately re�ect their present position� circuit po�

sitions outside the partition become outdated when other processes move their
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circuits around�

Using the Metropolis algorithm� the process decides whether to swap the two

selected circuits� If the circuits are swapped� the local circuit map is changed� but

copies of the circuit map in other processors are not updated�

Finally� when the number of tries equals the �stream length�� the process re�

linquishes control back to the supervisor process� Otherwise� it again randomly

selects two circuits� as above� and the sequence repeats�

When all processes have completed their streams� the supervisor process creates

an accurate shared copy of the circuit map� re�ecting changes made in individual

processors� It determines whether the annealing schedule is complete� If not�

it changes the annealing constraints according to the schedule� re�establishes the

partitions� and restarts the parallel processes�

����� Four Rectangular Approaches

To evaluate this class of parallel simulated annealing algorithms� I tried four

di�erent variations of rectangular partitioning� and compared them with two other

approaches� It will be helpful to refer to Figure ���� which illustrates the four

rectangular methods�

������� Proportional Rectangles

Proportional rectangles is the simplest of the four techniques� Here I divide

the chip into equal rectangles� roughly proportional to the overall chip size� I then
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Sharp and Sharpthin configurations with 8 processors

sharp, minimum width is 2.
sharpthin, minimum width is 1. System randomly selects horizontal

slice for spare processors

Fuzzy (edges +−1 from sharp) Proportional (only origin moves)

Figure ���� Rectangular Decomposition Schemes

randomly select the origin for this grid� Note that the rectangle shapes in this

technique never change�

������� Sharp Rectangles

The Sharp technique divides the chip into rectangles with a minimum width and

height of �� LetW be the chip width� H be the chip height� and p be the number of

processors� W � H� and p must satisfy the inequality d�p�He!� � min�p� bW��c��

If not� the chip size is too small for this partitioning� increase W or H� or decrease

p�

Choose the number of columns� Randomly select an integer column width

d�p�He � w � min�p� bW��c�� The chip will hold c � bW�wc columns�

Select the number of rows to r � bp�cc� using as many processors as possible
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with uniform divisions of the chip� The row height is h � bH�rc�

If wc � W or hc � H� then there are too few processors for the columns or

rows� To resolve this� widen a randomly chosen column c� to wc� � W � w�c� ��

and heighten a randomly chosen row� r� to hr� � H � h�r � ���

If p � rc� then rc � p processors are idle� To use the remaining processors�

increase the number of rows in column c� to rc� � p� c�r � ��� If hrc� 	� H� then

heighten a randomly selected row� r��� in column c� to hr�� � H � h�rc� � ��� in the

same manner as for c��

������� Sharpthin Rectangles

Sharpthin rectangles is the same as Sharp� except that it randomly selects w �

fdp�He� � � � �min�p�W �g� Sharp ensures that w � � and h � �� while Sharpthin

allows w � � and h � ��

It was thought that rectangles with width or height � would signicantly in�

crease the calculation error and reduce the quality of the resulting chip� The data

reported here appear to conrm these initial thoughts� The same e�ect probably

occurred in �KCP�	��

������� Fuzzy Rectangles

Fuzzy rectangles applies the Sharpmethod discussed above� except that circuits

lying on rectangle borders are assigned randomly to any rectangle adjacent to the

circuit� This creates rectangles with �fuzzy� borders� I hoped to increase the circuit
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mobility by doing this� but recognized that it might introduce greater errors�

������� Random�

Random� is a variation of Jayaraman�s technique �JD���� Before a swap stream�

each circuit is randomly assigned to a processor� The circuits are divided roughly

equally among the processors and no circuit is allocated to more than one processor

each time� When the swap stream completes� the circuits are again redistributed

to the processors�

The di�erence between Random� and Jayaraman�s technique is that Random�

disallow exchanges of pairs of circuits whose Manhattan distance exceeds ��

serial algorithms typically use this restriction to accelerate the annealing process

�KCV����

I also tried Jayaraman�s technique� called Random in the gures� hoping to

provide some data for comparison� but when the number of processors exceeded

	 annealing runs using unlimited Manhattan distance would not converge in a

reasonable time�

����� Speed vs� Accuracy and Mobility

When a process moves circuits within its region� the global states viewed by the

other processes become inconsistent� This introduces a computation error which�

uncontrolled� would destroy the quality of the outcome�

To minimize these errors� the stream length must be kept reasonably small�
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However� as the stream length decreases� the interprocess communication increases�

reducing the benets of multiprocessing� Any spatial decomposition algorithm

must balance these con�icting goals� higher accuracy improves the result� but

requires more time�

Partition shape can in�uence errors� Figure ��� shows cost�function errors for

di�erent spatial decomposition methods� while annealing the P� example with 	

processors and a stream length of 
	 tries�

Random assignment can introduce tremendous errors� If circuits are assigned

to partitions at random� a circuit�s neighbors are not likely to be within the same

partition� In a chip where circuits tend to have strong local connectivity �most

chips are like this�� calculation errors in random assignment are likely to be higher�

Swaps within these random partitions would cause dramatic changes in net length�

and those nets would probably be connected to circuits in other partitions� The

large cost�function errors for Random� and Random shown in Figure ��� bear this

out�

Circuit mobility also competes with execution time� Suppose� for example�

that partition boundaries never change� Then all swaps will occur within a region�

and the circuits in the region will never leave� To allow circuits to travel any

location on the grid� the algorithm must periodically redraw the boundaries� This

repartitioning increases execution time� because individual processes must copy

global state information for their region�s circuits before each stream� As the

stream length decreases� the program redraws partition boundaries more often�
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Figure ���� Cost Function Errors vs� Decomposition Methods

circuit mobility increases� but the execution speed decreases� Again� there is a

fundamental con�ict� higher circuit mobility improves the result� but requires

more time�

Partition shape can also a�ect circuit mobility� Figure ��	 shows how average

Manhattan distance traveled per circuit varies with di�erent spatial decomposition

methods�again I show the P� example with 	 processors and 
	 tries per stream�

Figure ��� presents an interesting contrast� Rather than showing the average

distance moved per trial �essentially a unit of time�� it shows the average distance

moved per accepted move� Note that unrestricted random assignment resulted in

the worst nal placement� yet it has a high mobility per accepted move� throughout
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Figure ��	� Circuit Mobility�Trial vs� Decomposition Method

the temperature range� This suggests that the important issue is mobility per

trial� Theory also suggests this� as mixing speed is related to mobility per trial

�OG��� Sor����

Suppose that partitions in a spatial decomposition scheme always take on a

wide� �at shape�as wide as the entire virtual grid� The non�random spatial de�

composition scheme described in �Kli��� follows this approach� Circuits exhibit

high mobility in the horizontal direction� but low mobility in the vertical direc�

tion� A circuit can travel from grid left to grid right in one stream� but it may

take several streams to travel from top to bottom� In terms of mobility� this may


�



Figure ���� Circuit Mobility�Accepted Move vs� Decomposition Method

be suitable for row�based placement problems where horizontal mobility is more

important� but is probably inadequate for gate�array or macro�cell placement�

��� Empirical Data

To gather statistics about placement quality� I ran the random rectangles algo�

rithms in a simulated IBM RP� environment� using EPEX C �WN�
� on an IBM

����� an IBM Ace�RT multiprocessor� and several HP ��������s� The nature of

the algorithm is such that simulation does not a�ect the placement quality or the

errors observed�
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I used the classic VLSI placement cost�function �KCV���� namely C � L!X��

where C is the cost �energy� of the system� L is the total wire length of the nets�

computed by the bounding box method� and X is the wire congestion� Since the

algorithm was simulated� run times for the RP� cannot be computed�

I obtained speedups� however� on the IBM Ace�RT multiprocessor� Due to

frequent bus collisions on this � processor� single bus system� I view the speedup

values obtained as lower bounds�

To evaluate a simulated annealing algorithm� one must run several trials using

di�erent random seeds� The mean nal cost over many trials provides a good

measure of the quality of a particular annealing technique� For each data point� I

ran �� trials�

At the boundary condition of a single processor� all spatial decomposition tech�

niques are the same� In the tables which follow� I simply duplicated the data from

one set of single processor trials in all ve categories� Had I made separate runs�

the single processor data points would di�er slightly due to the random nature of

the runs�

����� The P� Chip

I tried two chip systems� The rst� P�� is a uniform �� � grid with immediate

neighbor circuits connected by two�circuit nets� There are �� circuits� and �		

nets� It has a known ground state� under the cost�function� of E � �		� L � �		

and C � �� The ground state appears in Figure ��
�


	



Circuit

Wire

Figure ��
� P� Ground State

I evaluated each of the four rectangular techniques with �� �� 	� and � processors�

A fth set of runs using Random� provides a baseline from which to measure

improvement� Table ��� shows the type of partitioning� the number of processors

�P�� the number of tries per stream �T�S�� the percentage of runs which reached

the ground state cost of �		 �	 G�� the average nal cost �Ave E�� and the standard

deviation of the nal cost �Std E��

Sharp Sharpthin Proportional
P 	 G Ave E Std E 	 G Ave E Std E 	 G Ave E Std E
� ��" ������ ����	 ��" ������ ����	 ��" ������ ����	
� ��" ������ ���
� ��" ��
��� ����
� ��" ����
� 
����
	 �
" ����
	 ����� 	�" �	��
� ��
��� �	" ����

 �����
� ���" �		�� ���� ��" ������ ����� ��" ��
�
� ��	���

Fuzzy Random�
� ��" ������ ����	 ��" ������ ����	
� ��" �����
 �
�
� �
" �		��� �����
	 ��" ������ ���	� ��" ��	��� ��
��

� �" �
��		 �	��
 ��" �
���� �����

Table ���� P�� 
	 Tries�Stream� Convergence Statistics

Note that as the number of processors increases� most runs show an increasing
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average cost�function value� The number of runs which result in the ground state

of E � �		 typically decreases� Random� shows the worst degradation as the

number of processors increases� Since Random� creates the highest calculation

errors� that result was expected�

Oddly� Sharp on � processors shows the best result�all runs reached the ground

state� This is assumed to be due to the e�ects of partitioning on the move space�

With the ZA chip� described in the next section� Sharp performed better than the

other parallel techniques� but did not beat sequential annealing in nal cost�

The Sharp algorithm was also run on an IBM Ace�RT multiprocessor for a

speed trial� The IBM Ace�RT contains � IBM RT processors connected by a

single high�speed bus� Speedup data are shown in Table ���� Speedup is strongly

limited by the bus� since a huge amount of information �all changed states� must

be transferred on the shared bus at the end of each stream� The low speedups

obtained should be interpreted with the hardware limitations in mind�

Annealing on two processors was slower than one� There is no communica�

tion overhead in one processor� since state changes do not have to be copied at

all� Increasing the processors to two caused a substantial increase in communi�

cation overhead� enough to eliminate the extra processing available� Increasing

the processors from two to four did not increase communication as much� and the

algorithm could then exploit some of the extra processing available�







P Trials�Stream Seconds Speedup
� �
 ���� ���
	 �� ���� ���

� 
	 ��
� ����
� ��� ���� �

Table ���� P�� Sharp� IBM Ace�RT Speeds

����� The ZA Chip

The other problem I tried� called ZA� is a real printed circuit placement prob�

lem� All circuits in this problem are uniformly square� There are ��� circuits in

ZA� some of which are unconnected� There are �� nets� each with an average of

	��	 attached circuits�

Overall� there are three blocks of interconnected circuits� Two blocks include a

few simple ��circuit nets�circuit swaps in those blocks have minor e�ects on the

cost�function� The third block includes many multiple�circuit nets� typically � to

�� circuits per net� Each circuit has numerous connections to other circuits� One

swap in this group typically causes dramatic changes in the cost function�

Sharp Sharpthin Proportional Fuzzy Random�
P Ave E Std E Ave E Std E Ave E Std E Ave E Std E Ave E Std E
� ������ ���� ������ ���� ������ ���� ������ ���� ������ ����
� �����	 ���� ����
� ���� ������ ���� ������ ���	 ����	
 ����
	 ������ ���� �����
 ��	� ����	
 ���� ������ ���
 �����	 ����
� �	��	� ���� �	���
 ���� �	���� ��		 ������ ���	 �	���	 ����
�
 �	���� ���� �	���
 ���
 �	���� ��
� �	���	 ��
� ������ ����
�� �	���� ���� �	���� ���� �	���	 ���� �		�	� ���� �

��� ����

Table ���� ZA� 
	 Tries�Stream� Convergence

There is no known ground state to ZA� I obtained data for the four rectangular

spatial decomposition methods� and for the Random�method� I tried each of these
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partitioning methods with �� �� 	� �� �
� and �� processors� As with P�� data for

the single processor case is duplicated in all categories� Table ��� shows the results�

As with the P� example� Table ��� shows the best results in the Sharp partition�

ing method� Fuzzy looks promising until the processor count exceeds ��� Random��

as in the P� case� produces terrible results when the number of processors becomes

high�

I did not compare speedups for this circuit� The tests were performed on a

simulated RP� environment that did not give timing information�

��� Summary

This chapter presented four rectangular spatial decomposition techniques for

parallel simulated annealing� The rectangular techniques use partition shape to

help increase circuit mobility and decrease cost�function errors� This allows in�

creased stream length� providing greater parallelism and decreasing execution time

on multiprocessors�

One rectangular technique� Sharp� appears to perform better than the others�

I attribute this to the relatively low errors associated with it�

These experiments show that decreased cost�function errors and increased per�

trial mobility are important goals in spatial decomposition methods for simulated

annealing� Increased per�move mobility is apparently unimportant� Annealing

researchers face a trade�o�� increased parallelism can increase cost�function errors

or decrease per�trial circuit mobility� resulting in a less desirable annealing result�
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Partition shape can a�ect both circuit mobility and cost�function errors� and should

be considered when constructing parallel annealing programs�
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CHAPTER �

Analysis

��� Background

Previous chapters discussed di�erent parallel simulated annealing techniques�

and described my experiments in the area of parallel simulated annealing� My

experiments explored two values� cost�function errors and mobility�

That work drove me to analyze the e�ects of errors on simulated annealing� a

much discussed topic which had a limited theoretical base� This chapter attempts

to bring a stronger foundation to the eld�

In this chapter I prove these claims� Simulated annealing is tolerant of errors�

but errors either reduce outcome quality or require the algorithm to increase the

iterations performed� Convergence is guaranteed only if errors are constrainted

to a constant factor of the temperature� This is true both for the logarithmic

temperature schedule used in many annealing theory texts� when applied to general

annealing spaces� and for the common geometric temperature schedule applied to

self�a�ne functions� Finally� I construct a temperature schedule for a self�a�ne

cost�function to show how the results are applied�
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����� Inaccuracies in Cost Functions

Inaccuracy can speed up simulated annealing� For example� circuit placement

algorithms often use the half perimeter method� described in x����	��� If the wires

in the net parallel the x or y axis� if the net holds no more than � cells� and if the

wires encounter no obstructions� the half perimeter method is accurate� Otherwise�

it may be inaccurate� To calculate the wire�length more accurately would require

a slower cost�function�

Figure 	�� shows an example� In the rst row� a shows the half perimeter

estimate for a three�cell net� b shows the rectilinear wiring use with no obstruction�

c adds an obstruction� d allows the wires to be placed at angles� In the second

row� e shows the estimate for a four�cell net� f shows the rectilinear wiring with

no obstruction� Only in case b is the estimate correct�

a. Three cell net
    Half perimeter estimate

b. Rectilinear wires,
    no obstructions

c. Rectilinear wires,
    obstruction

d. Angled wires

e. Four cell net
    Half perimeter estimate

f. Rectilinear wires,
   more than three cells

Estimate correct Estimate too low Estimate too high

Estimate too low

Figure 	��� Wire Length Estimates

The problem statement itself is an approximation of an ill�dened real problem�

place transistors on silicon so that a chip is as fast as possible� while keeping
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the chip area small� Longer wires slow down the chip� making total net length

a plausible cost�function� but long�wires are not the only contributors to chip

slowness� and their contribution is not linear� A more accurate cost�function would

involve simulating the circuit and measuring the total time�delay� but this would

slow the annealing algorithm by several orders of magnitude�

����� Inaccuracies in Parallel Algorithms

Parallel processing can speed up simulated annealing� The parallel method I

focus on partitions ownership of the state variables among several processors� A

processor then generates trial states by manipulating only its own state variables�

Too high

Too far right

Too far right

Too far left

a. Initial configuration

b. Partitioned cells

c. Processors anneal

d. Local outcomes

e. Merged result

Processor 1
anneals top-left

Processor 2
anneals top-right

Processor 3
anneals bottom

Figure 	��� Parallel Annealing with Stale State�Variables

Each processor maintains local copies of other processors� state variables� If
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the value of a local copy of a state variable di�ers from the value in the owning

processor� call the local data �stale�� Periodically� the processors reassign cell

ownership and refresh local copies�

Figure 	�� shows a ��processor gate�array circuit placement example� Row a

shows the initial conguration� Each dot in the gure is a cell� The lines connecting

the dots are nets�

Row b shows how the cells have been partitioned among the processors� in this

case with some spatial locality�

In row c� each processor performs a xed number of annealing loop iterations

and then stops� A processor manipulates only state�variables for cells it owns �in

the white area�� but can refer to local copies of other state�variables �in the gray

area�� A processor may move a cell only within the white area�

Row d shows the result of each processor�s annealing� with the cell locations

it used to perform cost�function calculation� Notice that all local positions of

unowned cells are stale� and so many of the cost�function results were inaccurate�

Row e shows the merged outcome� If the iterations occurred at an innitesi�

mally low temperature �a greedy algorithm�� stale state�variables caused mistakes

in moving cells� The diagram points out four in the merged outcome�

The parallel algorithm allows the cost�function to use stale state�variables� and

those causes the cost�function to return inaccurate results �Gre��b�� Experiments

have characterized these inaccuracies �GD��� JD��� DKN����

To avoid using stale state�variables� the processors must communicate more
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frequently� perhaps even by locking state�variables� These operations increase ex�

ecution time� Thus� as in the half perimeter wire�length estimate� this trades o�

accuracy for speed�

����� Errors

It is useful to measure the �error� of a cost�function computation� the di�erence

between a state�s true�cost and the value returned by the cost�function �the �ob�

served cost��� But practitioners do not directly measure all errors in commercial

applications� that would require computation of the true�cost and the inaccurate

cost�function� If you can a�ord to compute the true�cost every time� there is no

benet in performing the inaccurate cost computation� Instead� you can sample

the errors or execute the algorithm on a smaller representative problem to get error

estimates�

I assumed that errors fall into two categories� range�errors and Gaussian�errors�

A cost�function has �range�errors� if the di�erence between the true�cost C�s� and

the cost�function %C�s� is conned to a xed range� A cost�function has �Gaussian�

errors� if the di�erence between the true�cost C�s� and the cost�function &C�s� is

a Gaussian random variable with mean C�s��

I studied range�errors because they are easy to measure� and Gaussian�errors

because they are the sums of independent random variables� The annealing al�

gorithm shown in Figure 	�� generates errors composed of a sum of dependent

random variables� As the chip becomes large relative to the number of proces�
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sors� I suspect the dependencies will decrease and the errors will become closer to

Gaussian� Others have hypothesized similarly �GM���� I draw conclusions about

both range�errors and Gaussian�errors� but range�errors receive the most complete

discussion�

Throughout this text� symbols with one dot above signify range�errors� such

as %C� Symbols with two dots above signify Gaussian errors� such as &�s� Symbols

without dots refer to functions and variables without errors�

����� The Problem

Experiments show that larger errors increase the outcome cost� but the litera�

ture contains contradictions �see discussion in x����� There are several unanswered

questions� I address this by exploring three general areas�

� Fixed temperature behavior� If the cost�function errors have known properties�

what is the equilibrium distribution at a xed temperature# What is the expected

cost# At what rate does the system equilibrate#

� Decreasing temperature schedules� If you limit the errors in the cost�function

during execution� by changing the frequency of interprocessor communication� by

altering the precision of computed values� or by introducing a cost�function with

a di�erent accuracy� can you produce as good an outcome as with the true�cost#

To get the same expected outcome as with an accurate cost function� how should

you alter the temperature# How will the total execution time change#

� Error characteristics� What types of inaccuracies might you expect# How

��



do you measure them#

����� Prior Work

Appealing to physical science analogies� Grover presented an early analysis

showing the e�ects of range�errors on the partition function �Gro���� Durand and

White analyzed equilibrium properties for range�errors on a restricted algorithmic

class �DW����

Gelfand and Mitter showed that slowly decreasing state�independent Gaussian

errors� under some conditions� do not a�ect asymptotic convergence under long

schedules� for discrete �GM��� and continuous �GM��� state spaces� I do not assume

state�independence�

Romeo and Sangiovanni�Vincentelli give conditions on range�errors such that

transition probabilities of an inaccurate annealing process converge to those of the

accurate process as T � � �RS���� That result can be usefully applied to long

schedules where regardless of the starting temperature� the system is guaranteed

to approach the equilibrium distribution� Application to shorter schedules seems

limited� I extend this result in x	���

Experiments have shown that when errors are proportionally constrained to

temperature� outcomes improve� Invoking these observations� researchers have

modied their algorithms to obtain better outcomes �KCP�	� BJS��� CRS���� The

analytic results I obtain conrm that temperature�dependence�
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����� Contents

x	�� introduces simulated annealing as a Markov process� and presents its fun�

damental properties�

x	�� derives equilibrium properties for annealing� x	���� shows the e�ects of

range�errors on expected cost� and x	���� shows the e�ects of Gaussian errors on

expected cost�

x	�	 shows how inaccuracies a�ect conductance� Conductance is a value that

approximates the rate a system approaches equilibrium �the mixing rate�� x	�	��

establishes the conductance for annealing with range�errors� x	�	�� establishes the

conductance for annealing under Gaussian noise�

x	�� introduces a framework for simulated annealing �Tsi���� Using this frame�

work� I prove that limiting cost errors proportionally to the temperature guarantees

the minimum cost outcome� using a T �t� � d� log t temperature schedule� The re�

sult is only mildly useful� since the execution time is exponential�

x	�
 describes fractal state spaces� Fractal spaces and practical problems are

statistically similar �Sor��� MS��� KT���� Annealing on fractal spaces has a con�

venient property� use of the geometric T �t� � ctT� schedule� used in many com�

mercial annealing programs� produces an outcome of preselected quality� I prove

that with a T �t� � ctT� temperature schedule on a fractal state space� if errors are

strictly limited to values proportional to the temperature� the system obtains the

same outcome quality� x	�
�� analyzes �conned annealing�� and x	�
�� extends
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the result to �unconned annealing�� In x	�
��� I show that inaccuracies require

you to increase the annealing steps to achieve the same quality�

x	�� discusses the practical issues involved in measuring errors� In this sec�

tion� I also show either of two types of observed range�errors� �instantaneous� or

�accumulated� errors can be used in my results�

x	�� summarizes the results and o�ers practical insights for implementing in�

accurate simulated annealing algorithms�

��� Properties of Simulated Annealing

First� I formalize simulated annealing� Please refer to Figure 	���

�� T � T��
�� s� starting � state�
�� E � C�s��
	� while not stopping�criteria��
�� s� � generate�s� with probability Gss��

� E � � C�s���
��  � E � � E�
�� if � � �� � �random�� � e���T �
�� s� s��
��� E � E ��
��� T �reduce�temperature�T ��
��� end while�

Figure 	��� Simulated Annealing

Let N � Z
� be the number of states� and let S � f�� � � � � Ng label all

states� Dene the generate probability matrix G so that Gss� is the probability

that generate will return state s� when passed argument s�

��



Let Tt be the temperature after t iterations� Dene the acceptance probability

matrix at time t� A�t�� so that

A
�t�
ss� �

�����
����
� if C�s�� � C�s�

e�C�s��C�s����Tt otherwise�

�	���

Dene an inhomogeneous Markov chain P corresponding to the annealing loop of

steps ��� in Figure 	�� as follows�

P
�t�
ss� �

�����
����

Gss�A
�t�
ss� if s 	� s�

��P
x��s� P

�t�
ss� otherwise�

�	���

Let s� be the starting state� P
�t�P �t��� � � �P ���s� gives the state probability vector

after t iterations�

If you x the temperature� then A�t� � A�t��� � A and P �t� � P �t��� � P � and

the annealing algorithm simulates a homogeneous Markov chain�

Even analysis of realistic accurate annealing is di�cult� a time�dependent ac�

ceptance matrix introduces problems� programs often use time�dependent generate

functions �Whi�	� Lam���� and the temperature schedule may not be monotonic

�SK����

Fortunately� annealing programs attempt to bring state probabilities near equi�

librium at each temperature �KCV���� Thus� you can gain information about

annealing behavior by looking at the homogeneous Markov chain�

Call a Markov chain that represents state transitions in an annealing algorithm

an �annealing chain�� If the temperature is xed� the annealing chain is homoge�

neous� A homogeneous annealing chain should be ergodic� otherwise the minimum
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cost state could be unreachable or periodic� With this property� each state s has

an equilibrium probability �s independent of the initial state� You can model many

annealing applications as ergodic processes� You can guarantee ergodicity if the

following properties hold�

probability �s � S�
X
s��S

Gss� � � �	���

coverage �s� s� � S� �k � �� ��Gk�ss� 	� �� �	�	�

aperiodicity �s � S� �Pss 	� �� �	���

niteness jSj � Z� �	�
�

�	��� simply states that Gs is a probability vector� �	�	� guarantees that the

annealing chain is irreducible� �	��� and �	�
� ensure that the chain is aperiodic

and nite� Irreducible� aperiodic� nite Markov chains are ergodic�

Add one more� the symmetry property�

symmetry �s� s� � S� �Gss� � Gs�s�� �	���

Including �	��� produces three useful results �OG���� rst� the equilibrium distri�

bution is otherwise independent of G� second� the annealing chain is reversible�

namely�

�i� j � S� �iPij � �jPji� �	���

third� the equilibrium distribution is the Boltzmann distribution� namely�

�s�T � �
e�C�s��TP

s��S e�C�s���T
� �	���
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Properties �	�����	��� are based on those of Otten and van Ginneken �OG����

however� they ensure aperiodicity by �s � S�Gss 	� �� a requirement not typically

satised by annealing programs� In contrast� this aperiodicity property� �	���� is

trivially satised if �s� s� � S�C�s� 	� C�s���

��� Equilibrium Properties

In this section� I compare the expected cost at equilibrium of an inaccurate

algorithm and that of an accurate algorithm� based on both range�errors and

Gaussian�errors�

When errors appear in the cost�function� I refer to the true�cost� C�s�� of state

s� and the observed�cost %C�s� � C�s� ! ��s�� of state s� � is a random function

dependent on s� thus %C�s� is a random function�

����� Range�Errors

If the true�cost of s is C�s�� a cost�function with range�errors� %C�s�� satises

�	�����

�s � S�C�s� ! � � %C�s� � C�s� ! � �	����

Let C�S � R give the true cost of each state� Let %C�S � R be a range�error cost�

function� You can use � and � from �	���� to compare the equilibrium distributions

of annealing with and without range�errors� The results I will derive will depend

only on �� �� so let � � �� ��
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Theorem � Let %�s�T � and �s�T � be the equilibrium probabilities of state s at

temperature T 
 with and without range�errors� Then


e���T�s�T � � %�s�T � � e��T�s�T � �	����

Proof� Pick any state s � S� By �	���� if you minimize the cost of s and maximize

the cost of all other states� as shown in Figure 	�	c� you maximize the equilibrium

probability of state s� Thus� let %C�s� � C�s� ! �� and �s� � �S n fsg�� � %C�s�� �

C�s�� ! ���

co
st

co
st

co
st

No Error Landscapea.

Maximize using errorsπ s
.

c. Minimize using errorsπ s
.

d.

∋

∋

γ

Error rangeb.

state s

Figure 	�	� Range�Errors and Equilibrium

In xing these worst�case costs� the inaccurate system satises the Boltzmann

distribution�

%�s�T � � e��C�s�����T

e��C�s�����T !
P

s� ��s e��C�s�����T
�	����
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�
e���T e�C�s��T

e���T e�C�s��T ! e���T
P

s� ��s e�C�s��T
�	����

Since e���T � e���T � then

%�s�T � � e���T e�C�s��T

e���T
P

s�S e�C�s��T
� �	��	�

Finally� substituting the accurate equilibrium probability �s�T � for its equivalent

gives

%�s�T � � e������T�s�T �� �	����

The converse argument supplies the lower bounds�

Theorem � Let 'C���T �� be the expected true�cost C
 with equilibrium distribution

�
 at temperature T � So


'C���T �� �
X
s�S

C�s��s�T � �	��
�

Then


e���T 'C���T �� � 'C� %��T �� � e��T 'C���T �� �	����

Proof� By Theorem ��

e���T
X
s�S

C�s��s�T � �
X
s�S

C�s� %�s�T � � e��T
X
s�S

C�s��s�T � �	����

which is equivalent to �	��
��

Thus� the di�erence between a state�s true equilibrium probability and its prob�

ability under an error�range increases exponentially as the size of the error�range
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increases and the temperature decreases� The average cost varies similarly� I use

these results throughout the rest of the chapter�

����� Gaussian Errors

Simulated annealing typically operates on discrete cost�functions where errors

appear as discrete values� However� as you add state variables and as the maximum

number of uncorrected independent moves increases �through increased parallelism

or longer stream lengths� for example�� the errors can approach a Gaussian distri�

bution�

In many instances� particularly in parallel applications� the probability distri�

bution of the inaccurate cost�function %C�s� is re�ected about the true�cost C�s�

�DW����

Thus� it is reasonable to investigate the e�ect of Gaussian�error cost�functions�

where each value is a Gaussian random variable with mean C�s�� I will show that

when the variances of the state costs do not di�er greatly� annealing converges to

a good solution�

Lemma � Let the cost of each state s be &C�s� � C�s� ! Xs
 where Xs is an

independent random variable� Execute the simulated annealing algorithm in Figure

���
 with lines � and  sampling random variables &C�s� and &C�s�� respectively
 and

with T �xed� If ����������� are satis�ed and T 
 �
 the resulting homogeneous

Markov chain &P is ergodic and reversible
 and the equilibrium probabilities are
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given by

&�i �
e�C�i��TE�e�Xi�T �P
j�S e�C�j��TE�e�Xj�T �

� �	����

Proof� For any two states s� s� � S� the acceptance probability &As�s� under

random cost�function &C satises � � &As�s� � ��

�P k�ss� �
X
s�

� � �
X

sk���S
Gss�

&As�s� � � �Gsk��s�
&Ask���s�� �	����

Since �	�	� is satised and all terms of A are non�zero� there is some k for which

� &P k�ss� is non�zero� Thus� &P is irreducible�

�	�����	�
� ensure that &P is irreducible� aperiodic� and nite� so &P is ergodic�

G is symmetric �	���� so &P is reversible and it satises the detailed balance con�

dition �	���� Thus� &�i
&Pij � &�j

&Pji� If &Pij is non�zero� then &�i � &�j
&Pji� &Pij �

&�jGji
&Aji��Gij

&Aij�� By �	���� &�i � &�j
&Aji� &Aij�

State transition

mean

state istate j

Figure 	��� State i Sampled and Fixed�

Upon entering state i� sample and x its cost until the state changes again� as

in Figure 	��� This is consistent with the algorithm in Figure 	���
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Let a�Ci� Cj� be the probability of accepting a move from a state with cost Ci

to a state with cost Cj� By �	��� this is

a�Ci� Cj� �

�����
����
� if Cj � Ci

e�Ci�Cj��T otherwise�

�	����

Let �i be the probability density function for random variable &C�i�� By �	����

this unfolds�

&Aji

&Aij

�
Z �

��

Z �

��
�i�xi��j�xj�

a�xj� xi�

a�xi� xj�
dxidxj �	����

�
Z �

��
�i�xi�

�Z
xj�xi

�j�xj�
�

e�C�i��xi�C�j��xj��T dxj �	����

!
Z
xj�xi

�j�xj�
e�C�j��xj�C�i��xi��T

�
dxj

�
dxi

�
Z �

��
�i�xi�e

��C�i��xi��Tdxi
Z �

��
�j�xj�e

�C�j��xj��Tdxj �	��	�

�
eC�j��TE�eXj�T �

eC�i��TE�eXi�T �
�	����

For any Gij 	� �� the detailed balance equation �	��� is now

&�ie
C�i��TE�eXi�T � � &�je

C�j��TE�eXj�T �� �	��
�

By �	����� &� is a probability distribution �
P

s�S &�s � ��� �	���� satises �	��
�

for all state pairs� Since &P is ergodic� �	���� must be the unique probability

distribution�

Corollary � If all Xs are identically distributed
 and the resulting Markov chain

is ergodic
 then &� � ��

�




Proof� This follows directly from the proof of Lemma ��

Lemma � If X is a Gaussian random variable with mean � and standard devia�

tion 
 then

E�e�X�T � � e�
���T ����T �	����

Proof� By denition�

E�e�X�T � �
Z �

��
e�x�T

�p
��

e��x���
�����dx

�
�p
��

Z �

��
e�x�T�x

�������x������������dx �	����

�
e��

�����

p
��

Z �

��
e�	x

���x�����x�T 
����dx �	����

�
e��

�����

p
��

Z �

��
e�	x

���x����T��������T���������T����
����dx �	����

�
e��

����������T��������
p
��

Z �

��
e��x��

��T��������dx �	����

Let u � �x! ��T � ���
p
� and du � dx�

p
�� Then

E�e�X�T � �
e�

���T ����T
p
�

Z �

��
e�u

�

du� �	����

By a standard mathematical trick� convert Cartesian to polar coordinates and

obtain

E�e�X�T � � e�
���T ����T � �	����

Theorem � Let C�S � R be a cost�function with equilibrium distribution ��

Consider a random cost�function &C�S � R
 where each random variable &C�s�
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is an independent Gaussian distribution with mean C�s� and variance ��s� and

equilibrium distribution &�� Then &�s is bounded by

e��
�������T �

�s � &�s � e��
�������T �

�s �	��	�

Proof� By Lemmas � and ��

&�s �
e�

��s���T ��C�s��TP
s��S e�

��s����T ��C�s���T
�	����

Fix s� To maximize &�s� maximize the numerator at e
����T ��C�s��T and minimize

the denominator at Z � e�
���T �

e�C�s��T !
P

s� ��s e
����T �

eC�s���T � The inequality

Z � X
s��S

e�
���T �

eC�s���T �	��
�

produces

&�s � e�
���T �

eC�s��TP
s��S e�

���T �eC�s��T
� e��

�������T �

�s �	����

A similar argument supplies the lower bound�

Theorem 
 Let 'C���T �� be the expected true�cost C
 with equilibrium distribution

�
 at temperature T � Then


e���
�������T � 'C���T �� � 'C�&��T �� � e��

�������T � 'C���T �� �	����

Proof� By Theorem 
�

e���
�������T � X

s�S
C�s��s�T � �

X
s�S

C�s�&�s�T � � e��
�������T � X

s�S
C�s��s�T � �	����
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Denition �	��
� gives the result�

These results show that under Gaussian errors� the variance range determines

equilibrium state probabilities and average cost� As the variance�range increases

and temperature decreases� the e�ect on equilibrium properties increases exponen�

tially�

��� Mixing Speed

Mixing speed is the rate at which an ergodic process approaches equilibrium�

A higher mixing speed indicates that you can more rapidly reduce the temperature

while maintaining near�equilibrium� Errors a�ect mixing speed� not necessarily for

the worse�

To quantify mixing speed� you must rst have a measure for the distance from

equilibrium� Let P be the transition matrix for the annealing chain� let � be

the stationary probability vector over state space S� Let t denote time� and x�t�

denote state probabilities at time t� so x�t� � P tx���� Dene the discrepancy

vector d�t� � x�t�� �� Dene the distance from equilibrium as

kd�t�k �X
s�S

d�
s�t�� �	�	��

If P is a Markov chain and �i is the stationary probability of state i� dene the

conductance of a subset� (V � V � S as

(V �

P
i�V

P
j ��V �iPijP

i�V �i
�	�	��

��



In words� the conductance of a state subset V is the conditional probability that

some transition will leave the subset� given that you start there� Figure 	�
 illus�

trates this concept�

V

S\V

j
i

Figure 	�
� Conductance of Subset V

Let �V �
P

v�V �v� and let S��� � fV � Sj�V � ���g� Dene the global

conductance� (� as the minimum conductance over all subsets with stationary

probability below ���� thus�

( � min
V �S���

(V �	�	��

Sinclair and Jerrum showed that any initial distribution of a strongly aperiodic

Markov chain� such as dened in �	�����	���� with discrepency vector d���� satises

�	�	�� �SJ����

kd�t�k � ��� (��t � kd���k �	�	��

Thus� global conductance provides a good measure for mixing speed�

Another commonly�used mixing speed measure is the �dominant eigenvalue��
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The convergence rate of a simulated annealing algorithm is inversely related to

the eigenvalues of its underlying Markov chain �BS��� OG���� The eigenvalues

measure the �ruggedness� of the cost landscape� The second largest eigenvalue

�or �dominant eigenvalue��� in particular� provides a rst�approximation to the

slowness of reaching equilibrium from an arbitrary starting state�

Calculating the eigenvalues for annealing spaces is typically intractable� how�

ever a useful bound relates the more easily computed global conductance to the

dominant eigenvalue �SJ���� Sinclair and Jerrum showed that for an ergodic re�

versible Markov chain� the dominant eigenvalue �� of the transition matrix satises

�	�		��

�� � �� (
�

�
� �	�		�

Thus� by raising the global conductance� you reduce the dominant eigenvalue and

increase the convergence rate�

Others have examined the e�ect of adjusting the move spaces to obtain better

mixing speed �Sor��� OG���� In the following two sections� I show how the errors

modify mixing speed� using global conductance as a measure�

����� Mixing Speed Under Range�Errors

Consider two functions� the true�cost given by C� and the observed�cost given

by random function %C� Suppose %C is bounded relative to C� �s � S�C�s� ! � �
%C�s� � C�s�! �� As before� let � � �� �� What is the e�ect of these errors on the

global conductance#
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Lemma � Consider two annealing chains P and %P 
 with G and S de�ned iden�

tically� They have cost�functions C and %C
 respectively� The two cost�functions

are related by C�s� ! � � %C � C�s� ! �� Let (V and %(V be the corresponding

conductances for subset V � S� Then


e����T %(V � (V � e�� %(V �	�	��

Proof� Let V � � S n V � The conductance of V � S� under cost�function %C is

%(V �

P
i�V

P
j�V � %�iGij

%AijP
i�V %�i

�	�	
�

Construct an upper bound on (V � For any vertex i � V � you can lower its transition

probability to any j � V � by a factor of at most e�� � This follows directly from

the denition of A and %C� Minimize the acceptance term thus� %Aij � Aije
���T � I

assume that the generate probability matrix G does not change� Thus� you have

%(V � e���T
P

i�V
P

j�V � %�iGijAijP
i�V %�i

�	�	��

Using Theorem ��

%(V � e���T
P

i�V
P

j�V � e���T�iGijAijP
i�V e���i

� �	�	��

which implies

(V � e����T %(V � �	�	��

A similar construction supplies the lower bound�

��



Theorem � Let ( and %( be the global conductances of annealing chains P and

%P � Then


e����T( � %( � e����T( �	����

Proof� Let %S��� � fV � Sj %�V � ���g� Suppose

min
V� �S���

%(V � %(A �	����

for some set W � %S���� There are two cases�

Case �� W � S����

By Lemma �� Theorem � holds�

Case �� W 	� S����

By denition�

%(W �

P
i�W

P
j ��W %�i

%PijP
i�W %�i

� �	����

Let W � � S nW � %P satises the detailed balance conditions �	���� and thus

X
i�W

X
j ��W

%�i
%Pij �

X
i�W �

X
j ��W �

%�j
%Pji� �	����

so �	���� becomes

%(W �

P
i�W �

P
j ��W � %�i

%PijP
i�W %�i

� �	��	�

W � %S��� implies that � %�W � ���� Therefore� %�W � � ���� Thus� %�W � � %�W

and

%(W �
P

i�W �

P
j ��W � %�i

%PijP
i�W � %�i

� %(W � � �	����

��



By Lemma �� you have

%(W � %(W � � e����T(W �� �	��
�

Note that W � � S���� By �	�	��� you have %(W � e����T(� and %( � e����T(� Thus

e����T( � %(� �	����

A similar proof� starting with S��� instead of %S���� supplies the upper bound in

�	�����

This result predicts the rate that an inaccurate system equilibrates� if you know

the maximum error magnitude and the rate that the accurate system equilibrates�

����� Mixing Speed Under Gaussian Errors

Now consider the mixing speed of Gaussian cost�functions� Substitute &C for %C

in �	�	
�� The conductance of a subset V � S is dened by

&(V �

P
i�V

P
j ��V &�iGij

&AijP
i�V &�i

� �	����

Lemma � �Conductance Reversibility� Consider state space S
 and subsets

V � S and V � � S nV � Let (V be the conductance of V 
 and �V be the equilibrium

probability of set V � If the underlying Markov space has the reversibility property


then

(V�V � � (V ��V �	����

�	



Proof� The conductance of V is

(V �

P
i�V

P
j�V � �iPijP
i�V �i

� �	�
��

The conductance of V � is

(V �

P
i�V

P
j�V � �jPjiP

i�V � �i

� �	�
��

By the reversibility property� the numerators of �	�
�� and �	�
�� are equal� Alge�

bra produces �	�����

Lemma �� Apply Gaussian�error cost�function to states i� j � S
 as described

previously
 then the acceptance probability &A behaves according to the inequality

&Aij � e�
��T �

Aij� �	�
��

Proof� Let random variables X and Y be dened so X � &C�i� and Y � &C�j��

By the denition of A�

&Aij �
Z �

��

�Z �

x
e�x�y��T�j�y� dy !

Z x

��
�j�y� dy

�
�i�x�dx� �	�
��

Since y � x� e�x�y��T � ��

&Aij �
Z �

��

Z �

��
�j�y��i�x� dy dx� �	�
	�

Separating independent integrations�

&Aij �
Z �

��
�i�x� dx

Z �

��
�j�y� dy� �	�
��

��



By Lemma ��

&Aij � e�
�
i ��T

��C�i��T e�
�
j ��T

��C�j��T � �	�

�

and therefore

&Aij � e�
�
i ��T

����j ��T
�

e�C�i��C�j���T � �	�
��

Suppose C�i� � C�j�� then e�C�i��C�j���T � Aij and Equation 	�
� holds� Suppose

C�i� � C�j� then Aij � �� Since e
����T � � � and since &Aij � �� Equation 	�
�

holds here also�

Lemma �� Let &C be a random function where each random variable &C�s� is a

Gaussian� &C�s� has mean value C�s�� Let Aij and &Aij be the acceptance probabili�

ties for an annealing transition from state i to state j under cost�functions C and

&C respectively� Then A and &A are related by

&Aij � �
�
Aij� �	�
��

Proof� Examine the transition from state a to state b� There are two cases�

Case �� C�i� � C�j��

In this case� Aij � �� Let �i and �j be the probability densities of random

variables &C�i� and &C�j�� Restating �	�
��� the transition probability under &C is

Aij �
Z �

��
�i�x�

Z x

��
�j�y� � � dy dx �	�
��

!
Z �

��
�i�x�

Z �

x
�j�y�e

��y�x��Tdy dx

�




If C�i� � C�j� then the rst term always exceeds ���� Therefore� &Aij � �
�
Aij�

Case �� C�i� � C�j��

Now� Aij � e��C�j��C�i���T � Restate �	�
�� slightly di�erently for this case�

Aij �
Z �

��
�i�x�

Z x

��
�j�y� � � dy dx �	����

!
Z �

��
�i�x�

Z x�C�j��C�i�

x
�j�y�e

��y�x��Tdy dx

!
Z �

��
�i�x�

Z �

x�C�j��C�i�
�j�y�e

��C�j��C�i���Tdy dx

Examine the rst term of �	����� and note that

e��C�j��C�i���T
Z �

��
�i�x�

Z x

��
�j�y� dy dx �	����

�
Z �

��
�i�x�

Z x

��
�j�y� dy dx�

Examine the second term of �	����� I assert that

Z �

��
�i�x�

Z x�C�j��C�i�

x
�j�y�e

��C�j��C�i���T dy dx

�
Z �

��
�i�x�

Z x�C�j��C�i�

x
�j�y�e

��y�x��Tdy dx �	����

Combining �	���� with �	���� and �	����� obtain

&Aij � e��C�j��C�i���T
Z �

��
�i�x�

Z x�C�j��C�i�

��
�j�y� � � dy dx

!
Z �

��
�i�x�

Z �

x�C�j��C�i�
�j�y�e

��y�x��Tdy dx �	����

Since the means of both �i and �j are less than x ! C�j�� C�i�� the rst term is

no less than �
�
e��C�j��C�i���T � Thus�

&Aij � �
�
Aij� �	��	�

��



Lemma �� Consider two annealing chains P and &P 
 with the same generate prob�

ability matrix G and state space S� Chain P has cost�function C
 and chain

&P has Gaussian random cost�function &C� The two cost�functions are related by

E� &C�s�� � C�s�� The variance of each random variable &C�s�
 �
s 
 is constrained by

� � �
s � �� Then the conductances of a subset V � S in the two chains are

related by

�

�
e��

������T �

(V � &(V � e���
������T �

(V � �	����

Proof� By denition �	�	���

&(V �

P
i�V

P
j ��V &�iGij

&AijP
i�V &�i

� �	��
�

By Theorem 
 and Lemma ���

&(V �
P

i�V
P

j ��V �ie
���������T �

GijAije
���T �

P
i�S e��

�������T �
�i

� �	����

By simple algebra obtain

&(V � e���
������T �

(V � �	����

By Theorem 
 and Lemma ���

P
i�V

P
j ��V �ie

���������T �
Gij

�
�
AijP

i�S e��
�������T �

�i

� &(V �	����

and by algebra obtain

�

�
e��

������T(V � &(V � �	����

Combining �	���� and �	����� obtain �	�����

��



Theorem �� Consider two annealing chains P and &P 
 with the same generate

probability matrix G and state space S� Chain P has cost�function C
 and chain

&P has Gaussian random cost�function &C� The two cost�functions are related by

E� &C�s�� � C�s�� The variance of each random variable &C�s�
 �
s 
 is constrained by

� � �
s � �� Then the global conductances of the two chains are related by

�

�
e��

������T �

( � &( � e���
�������T �

(� �	����

Proof� By denition�

&( � min
V �S���

&(V � �	����

Choose any V � &S���� There are two cases�

Case �� V � S����

Let WV � V � By Lemma ���

�

�
e��

������T �

(WV
� &(V � �	����

This ends case ��

Case �� V 	� S����

Let WV � S nV � If V 	� S���� then �V 
 ���� Therefore� ���V � �WV
� ���

and WV � S����

By Lemma ��

(V�WV
� (WV

�V � �	��	�

therefore

(WV

�V

�WV

� (V � �	����

��



�WV
� ��� and �V 
 ���� so

(WV

�����

�����
� (V � �	��
�

By Lemma ���

�

�
e��

������T �

(WV
� &(V � �	����

This ends case ��

Let SW � fWV �V � &S���g� and let

(SW
� min

W�SW
(WV

� �	����

Then by �	����� �	����� and the denition of &(�

�

�
e��

������T �

(SW
� &( �	����

But SW � S���� so by denition of S����

�

�
e��

������T �

( � �
�
e��

������T �

(SW
� &( �	����

This proves the leftmost inequality in �	�����

Now I prove the rightmost inequality� This second half of the proof follows

the reasoning of the rst� I provide it because the factors and results are slightly

di�erent�

By denition�

( � min
V �S���

(V � �	����

Choose any V � S���� There are two cases�

���



Case �� V � &S����

Let XV � V � By Lemma ���

&(V � e���
������T �

(V � �	����

This ends case ��

Case �� V 	� &S����

Let XV � S n V � If V 	� &S���� then &�V 
 ���� Therefore� �� &�V � &�XV
� ���

and XV � &S����

By Lemma ��

&(V &�XV
� &(XV

&�V � �	����

therefore

&(XV

&�V

&�XV

� &(V � �	��	�

&�XV
� ��� and &�V 
 ���� so

&(XV

�����

�����
� &(V � �	����

By Lemma ���

&(XV
� e���

������T �

(V � �	��
�

This ends case ��

Let &SX � fXV �V � S���g� and let

(SX
� min

X�SX
&(XV

� �	����

���



Then by �	����� �	��
�� and the denition of (�

(SX
� e���

������T �

( �	����

But &SX � &S���� so by denition of &S����

&( � (SX
� e���

������T �

(� �	����

�	���� and �	���� prove the theorem�

How do I interpret this result# ( is equivalent to the speed at which the

accurate annealing system equilibrates� &( is the speed at which the inaccurate

system equilibrates� Suppose you have an annealing schedule which keeps the

accurate system at temperature T for time tT � To guarantee the same level of

equilibration in the inaccurate case� keep the system at temperature T for time

&tT � �e
��������T �

tT �	�����

��� Convergence on General Spaces

On ergodic spaces� simulated annealing will provably converge monotonically to

an optimum� with an appropriate temperature schedule� The most general results

don�t constrain the state space� other than by �	�����	���� You pay a time penalty

for generality� The T �t� � d� log t temperature schedule� annealing a reversible

graph� converges to a minimum cost state �Haj���� but it takes exponential time�

Tsitsiklis generalized this result to non�reversible graphs �Tsi����

���



I rst present a result by Tsitsiklis without proof� interested readers can refer

to the original paper� I then prove that constraining errors to a constant factor of

temperature guarantees convergence�

Dene global optima set S� such that s � S� � C�s�� � minfC�s��js� � Sg�

With state space S� generate probability matrix G� and cost�function C� construct

a delta matrix D� as follows�

D�
ij �

����������
���������


 if Gij � �

C�j�� C�i� if Gij 	� � and C�j� � C�i�

� otherwise

�	�����

If �	�����	��� are satised� D� captures enough information to compute equilibrium

probabilities at any xed temperature�

Now� construct the set of transient states 	R so that

	R � fi � Sj�j � S such that D�
ij � � and D

�
ji 	� �g �	�����

All other states� R � S n 	R� are termed recurrent� These recurrent states are the

local minima� Construct a partitioning over R� for any i � R� its equivalency class

is Ri � fj � RjD�
ij � �g�

Figure 	�� shows a pruning algorithm� At pruning depth d! �� eliminate local

minima of depth d� Informally� measure the depth by starting at some i � R� and

following the shortest path to a lower local minimum j� The di�erence between

the greatest cost reached on the path and C�i�� is the depth of i�

Hajek describes this process as �how cups runneth over�� the state variable has

���



Input� N �N matrix Dd�
Output� N �N matrices Dd��� sets 	Rd� Rd � S� equivalency sets Rd

i �

�� Find the transient states 	Rd� recurrent states Rd� and equivalence
classes Rd

i of D
d�

�� Let

Cij �

�
Dd
ij � � if i� j � Rd and j 	� Rd

i

Dd
ij otherwise

�	�����

�� For all i � Rd� j � Rd solve the shortest path problem from i to j over
Dd� Let Dd��

ij be its length� �Note that i � Rd � Dd��
ii � ���

	� For all i � Rd� j � 	Rd� let

Dk��
ij � min

k�Rd
fDd��

ik ! Ckjg � min
k�Rd

fDd��
ik !Dd

kjg �	���	�

�� If i � 	Rk� let

Dk��
ij � min

k�Rd
fCik !Dd��

kj g � min
k�Rd

fDd
ik !Dd��

kj g �	�����

Figure 	��� Prune Minima Algorithm

to �run over� some boundary to escape a local minima� The higher the boundary�

the longer the algorithm takes to crest it�

The recurrent state sets constructed by this algorithm have important prop�

erties� First� Rd�� � Rd� Second� if the system satises �	�����	���� then some

d� � Z�� produces Rd� � S�� the set of all minimum cost states�

Figure 	�� shows an example space� and its delta matrix� Prune the annealing

space by iterating with Prune Minima� The rst iteration yields 	R� � 	R�R� �

R�C�� and D��

	R� � fb� dg� R� � fa� c� eg �	���
�

��	
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Figure 	��� Pruning Example
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The second iteration yields 	R�� R�� C�� and D��

	R� � fb� dg� R� � fa� c� eg �	�����
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The third iteration yields

	R� � fb� c� d� eg� R� � fag� C� � D�� D� � D�� �	�����

Further iterations produce no changes� Thus� R� � fag is the set of global minima

for this example� and the maximum depth of local minima is ��

Let P � be a stochastic matrix �whose ijth entry is denoted by p�ij�� parame�

terized by a positive parameter �� Assume that there exist positive constants C��

C�� and a collection A � f�ij� � � i� j � Ng such that �ij � N� � f
g� �i� j

and such that p�ij � � whenever �ij � 
� and C��
�ij � p�ij � C��

�ij whenever

�ij � 
� Finally� assume a monotonically nonincreasing function �temperature

schedule� ��N� � ��� ���

Consider the Markov chain X�t� with transition probabilities given by P �X�t!

�� � jjX�t� � i� � p�ij� If you let � � e���T �t�� and if

�ij �

�����
����

 if Gij � �

maxf�� C�j�� C�i�g otherwise�

�	�����

then X�t� is the same as simulated annealing� Classify the states as recurrent or

transient� State i is transient i� �j � S� �ij � ���ji 	� �� Otherwise� i is recurrent�

Assumption� If at least one of the states i� j� and k are recurrent� then �ik �

�ij ! �jk�

Theorem �� �Tsitsiklis� Assume that for some integer d � �


�X
t��

�d�t� �
 �	�����

��




�X
t��

�d���t� �
 �	�����

Then

�� �i � S� limt�� P �X�t� � RdjX��� � i� � ��

�� For any i � Rd
 lim supt�� P �X�t� � ijX��� � i� 
 ��

Corollary �� �Tsitsiklis� Let the transition probabilities for simulated annealing

be given by ����� and ������ Consider temperature schedules of the form T �t� �

c� log t� For any initial state
 the algorithm converges in probability to the set of

global minima
 S�
 if and only if there exists some d such that Rd � S�
 then c is

larger than or equal to the smallest such d
 to be denoted by d	�

Theorem �
 Suppose a inaccurate simulated annealing chain satis�es �����������

and has a cost�function %C�s� t�
 with time�dependent errors

C�s� ! ��t� � %C�s� t� � C�s� ! ��t�� �	���	�

Let S� be the set of minimum cost states in S�

Let b�T �t� � ��t� � ��t� � b�T �t�
 where b� and b� are constants� Let the

temperature schedule be of the form T �t� � d� log t
 where d � Z
��� Then the

algorithm converges in probability to the set of global minima if Rd � S��

Proof� Suppose the transition matrix P t for some Markovian system at time t is

constrained by �	������

c�e
�D�

ij�T �t� � P t
ij � c�e

�D�
ij�T �t�� �	�����

���



where c� and c� are positive constants� Assume for some integer d � � that �	���
�

and �	����� hold�

�X
t��

e�d�T �t� �
 �	���
�

�X
t��

e�d���T �t� �
 �	�����

Theorem �
 shows that �	����� and �	����� are true�

�i � S� lim
t��

P �X�t� � RdjX��� � i� � � �	�����

�i � Rd� lim sup
t��

P �X�t� � ijX��� � i� 
 � �	�����

Let c� � e�b� and c� � e�b� � These values satisfy �	���	� and �	������

Let d satisfy Rd � S�� Such a d must exist� since �	�����	��� are satised�

Let T �t� � d� log t� This satises �	���
� and �	������ By �	����� the inaccurate

simulated annealing algorithm converges in probability to the set of global minima�

This result shows that if errors are constrained above and below by constant

factors of the temperature� annealing under a c� log t temperature schedule will

converge to an optimum� This result applies to any state space satisfying �	����

�	����

The convergence time makes this schedule uninteresting for practical matters�

Its primary advantage� and the reason it appears in so many simulated annealing

papers� is that it applies generally and yields theoretical results�

���



��� Deterministic Fractal Spaces

Several researchers have postulated that many common annealing spaces have

a self�a�ne �fractal� structure �Sor��� MS��� KT���� This characterization appeals

because a geometric temperature schedule� ubiquitous in annealing programs� prov�

ably drives annealing to the optimum in a fractal space� Statistical comparisons

suggest that the more closely an optimization space approximates a fractal struc�

ture� the more likely simulated annealing will nd a good solution �Sor���� This

is also the annealing schedule for a physical system with constant specic heat� as

described in equation ������

In this section� I analyze the performance of inaccurate simulated annealing on

a deterministic fractal space� Following Sorkin�s work� suppose you have integer

base b 
 �� scaling factor r � ��� ��� and arbitrary� xed function F � f�� � � � � b��g �

��� ��� The a�complement function of x� compa�x�� is dened below�

compa�x� �

�����
����

x if a is even�

�� x otherwise�

�	�����

Construct a cost�function C� ��� ��� ��� ����� r�� as follows� Represent state s in

base b as ��s�s� � � �� If state s has two representations� such as ��������� � � � and

���� for b � �� use the terminating one� Then

C�s� � F �s�� ! r � C�comps����s�s� � � ���� �	�����

Thus� you have C� ��� ��� ��� ����� r���

���
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Figure 	��� Base � Fractal Example

Spaces of this form exhibit a deterministic fractal structure� Figure 	�� shows

a simple example with base b � � and scaling factor r � ���� The contribution of

rst digit s� is added to the contribution of s� to form an approximation for the

cost of s� If you compute the approximation of C�s� using digits s� through sk

�i�e�� presuming C�compsk���sk�� � � ��� � ��� the value you obtain is o� by no more

than

�X
i�k��

ri �
rk ! �

�� r
� �	�����

�	����� constructs the state space to anneal� but I have not presented a gen�

erate function� This analysis considers two generate functions� for conned and

unconned annealing� Conned annealing is unrealistically simple� but results for

conned annealing will apply to unconned annealing�

Suppose that you can perturb a single digit sk of state s� by adding or sub�

���



tracting b�k��� to generate a new state s�� If the perturbation would cause a carry

or borrow into digit sk��� then move back to the original digit� Formally� the move

set for state s at stage k is

Sc

k�s� �

����������
���������

fs� b�k��� s! b�k��g if � � sk � b� ��

fs� s! b�k��g if sk � ��

fs� b�k��� sg if sk � b� ��

�	�����

The corresponding generate function is

generateck�s� � Choose randomly from Sc

k �	���	�

Using this generate function produces what Sorkin calls conned annealing� so

named because moves at stage k are conned by the rst k� � digits in the state�

By contrast� unconned annealing has a less restricted move set�

Su

k �s� �

����������
���������

fs� b�k��� s! b�k��g if b�k�� � s � �� b�k���

fs� s! b�k��g if s � b�k���

fs� b�k��� sg if s 
 �� b�k���

�	�����

It has the obvious generate function generateuk � An example showing the di�er�

ences between conned and unconned annealing appears in Figure 	����

This algorithm changes its generate function� starting with generate� and

incrementing the subscript with each change in temperature� This feature is not

exotic� tying the move scale to temperature has been common since the earliest

work on simulated annealing �Whi�	��

���



����� Con	ned Annealing

First� presume each state exhibits a xed error� That is� that there is a single�

valued function ��S � R� Further presume that the accurate state space has a

fractal structure� You can transform it into a new problem of the same class�

De	nition �� The total variational distance between two probability vectors � and

�� is

k�� � �ktvd �
�

�

X
v�V

j��v � �vj �	���
�

or equivalently


k�� � �ktvd �
X

v�V ���

v��v

j��v � �vj �	�����

Lemma �� If �
 ��
 and ��� are probability vectors on the same space
 then

k�� ���ktvd � k�� ��ktvd ! k�� � ���ktvd �	�����

Proof� Apply the denition of ktvd and the triangle inequality for absolute value�

De	nition � The minimum non�zero value of function F �V � R is de�ned by

 F � min
v�V

fF �v�� F �v� 	� �g �	�����

Lemma �� Let � � ��� ��� If � � �T ln��� ��
 then k� � %�ktvd � ��

Proof� Let av � �v� %�v� By the denition of ��

k� � %�ktvd �
�

�

X
v�V

j�v � %�vj �	�����

���



�
�

�

X
v�V

j�v � av�vj �	�����

�
�

�

X
v�V

j��� av��vj �	�����

By Theorem �� you have e���T � av � e��T � To maximize the e�ect of av� reduce

some �v � � by a factor of e
���T and raise some other �v � � correspondingly by

a factor of e��T � So

k� � %�ktvd �
�

�
� � � ��� e���T � �	�����

By the premise obtain

�� e���T � � �	���	�

�	���	�� �	������ and transitivity of � prove the result�

Here I state several results from �Sor��� without proof��

Lemma �� �Sorkin ������ Let f �V � �fmin� fmax�
 let frange � fmax � fmin
 let

� be an arbitrary probability distribution on V 
 and let ��T � and ���� be the

stationary distributions at temperatures T and �
 then

E�f ���� � E�f ���T ��� ! k�� ��T �ktvd � frange �	�����

De	nition �� For a graph G with b vertices let )T ��� � b� �  � ln�b����� If G is

regular
 substitute b for b��

Lemma �� �Sorkin ������ Given  
 let T � )T ��� � b�� If  � � or  �

minfF �v�jF �v� 
 �g
 then

E�F ���T ��� � �� �	���
�

���



and if  �  F as de�ned in De�nition ��
 then

E�F ���T ��� � k��T �� ����ktvd � �� �	�����

De	nition �� For an annealing graph G with b vertices and for a given temper�

ature T 
 let

)t�T� �� b� � �

�
ln

�
b�

�

�
!
�

T

�
�

(��
�e
��T �	�����

If G is regular
 substitute b for b�� Also
 if G is regular you may substitute ��b for

(�
��

Lemma �� �Sorkin ������ If t � )t�T� �� n� then beginning from any distribu�

tion ���� and annealing at temperature T for time t
 the outcome distribution ��t�

satis�es

k��t� � ��T �ktvd � � �	�����

You will need to x the temperature until the total variational distance from

the present distribution to the stationary distribution is less than some distance

� � ��� ���

Theorem �
 �Sorkin ����
� Consider a graph G with b vertices
 a cost�function

F from G to R having minimum � and maximum �
 and a small value �� Let  

be any of  F 
 �
 or minfF �v��F �v� 
 �g� With the functions )T and )t as de�ned

above
 begin from an arbitrary initial distribution ���� and anneal at temperature

T � )T ��� � b� for t � )t�T� �� b� steps� If the outcome distribution is denoted ��t�


��	



you have�

E�F ���T ��� � �� �	��	��

k��t� � ��T �ktvd � � �	��	��

E�F ���t��� � �� �	��	��

If  �  F 
 the bounds in ������� and ������� can be improved to � and ��

respectively�

Lemma �� De�ne

T � )T���� �� b� � )T ��� �� b�� �	��	��

per De�nition ��
 and

t � )t��T� �� b� � )t�T� �� b� �	��		�

per De�nition ��� Apply simulated annealing with any starting distribution ���� for

time t and temperature T � Let ��t� denote the outcome probability distribution using

the accurate cost function
 and let %��t� denote the outcome probability distribution

under the inaccurate cost function� Then

k %��t� � %��T �ktvd � �� �	��	��

E�F � %��T ��� � ��� and �	��	
�

E�F � %��t��� � 	�� �	��	��

���



Proof� Let  � � in Lemmas �	 and �
� Then �note the absence of the dot

here��

E�F ���T ��� � �� �	��	��

and� the rst result�

k %��t� � %��T �ktvd � �� �	��	��

By Lemma ���

k��T �� %��T �ktvd � � �	�����

Combining these using Lemma ��� obtain

k��T �� %��t�ktvd � k��T �� %��T �ktvd � k %��T �� ��T �ktvd � �� �	�����

Using Lemma ��� obtain the second and third results�

E�F � %��T ��� � E�F ���T ��� ! k��T �� %��T �ktvd� and �	�����

E�F � %��t��� � E�F ���T ��� ! k��T �� %��t�ktvd � 	� �	�����

De	nition �� Construct a fractal�error cost�function with parameter � � ��� ��

as follows� Let �xed function F be given for the accurate space� De�ne %F as any

function such that

F ! � � %F � F ! �� �	���	�

Then construct the fractal�error cost�function %C substituting %F for F in ��������

��




Theorem � Let deterministic fractal C with base b and scale factor r be given�

Let quality factor � satisfy � � � � �� Compute )T � )T ��� � b� and )t � )t� )T � � b��

Apply con�ned annealing using fractal�error cost�function %C with cooling schedule

�Tk� tk� � �r
k�� )T � )t� for k � �� � � � � K and K � dln �� ln re� Limit the errors in

each stage by �k � �Tk ln��� ��� Then the outcome has expected relative cost �or

�quality��
 %qcon
 evaluated under the accurate cost�function


%qcon �
E�C� %���tK���

Crange
� �� �	�����

and the algorithm consumes run time

%tcon � dln �� ln re � )t � )t �K� �	���
�

Proof� By Lemma ��� annealing with �T�� t�� � � )T � )t� in generation � gives

E�F � %���t��� � 	�� Using the similarity of Sk to S�� annealing in generation k with

�Tk� t�� � �rk�� )T � )t� �	�����

results in a distribution for sk� %�
��t�� satisfying

E�F � %���t��� � 	� �	�����

Therefore� the expected cost of the outcome satises

E�C� %���tK��� �
KX
k��

rk��E�F � %���t��� !
�X

k�K��

rk�� � � �	�����

�
�

�� r
�	�! rK� �	��
��

Since C ranges from � to
P�

k�� r
k � ����� r�� the relative expected cost is

%qcon �
E�C� %���tK���

Crange
� 	�! rK� �	��
��

���



If K � dln �� ln re� then rK � �� This yields the result�

The previous result applies to a state space where both the accurate cost�

function and the errors are self�similar� This may have some basis in realistic

annealing problems� where reducing the size of the moves reduces the errors�

If the errors are not naturally self�similar� then you can impose articial ad�

justments to make them so�

Corollary �� De�ne %C so that C�s� ! � � %C�s� � C�s� ! �� If the errors are

limited by �k � ��T �
k � )T � ln�� � ��
 then the outcome has expected relative cost


%qcon
 under the accurate cost�function


%qcon �
E�C� %���tK���

Crange
� �� �	��
��

and the algorithm consumes run time

%tcon � dln �� ln re � )t���� �	��
��

����� Uncon	ned Annealing

This section will show that annealing on an unconned fractal space has the

same outcome distribution as the conned fractal space� appealing to the Sorkin

replica model�

The results for conned annealing encourage� but do not satisfy� In real an�

nealing applications� a program cannot constrain moves to a given state segment�

If it could� other algorithms would do a better job�

���
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Figure 	���� Unconned annealing vs� Conned annealing

As it turns out� allowing the state to stray into an adjacent segment will not

a�ect the result� The algorithm resolves the kth segment to within �� of the desired

outcome in generation k� as in conned annealing� In subsequent generations�

annealing continues on the kth segment with gradually decreasing temperature�

The additional processing can only improve the kth segment� and so the worst�

case bounds for conned annealing still hold�

The proof is virtually identical to Sorkin�s� I refer the reader to x��	 of �Sor����

and merely state the result�

Theorem �� Let value � � � � � satisfying )T � Tcrit
 and deterministic fractal C

with scale factor r be given� Let � � � ln������ Compute )T and )t as before� Apply

uncon�ned annealing with cooling schedule �Tk� tk� � �r
k�� )T � )t� for k � �� � � � � K

and K � dln �� ln re� Then the outcome has relative expected cost
 %quncon
 evaluated

���



under the accurate cost�function
 of

%quncon �
E�C� %���tK���

Crange
� �� �	��
	�

and the algorithm consumes run time

%tuncon � dln �� ln re � )t� �	��
��

Observe the proof outline from Figure 	���� When performing unconned an�

nealing� transitions may occur from one large�scale feature to another �as from

��� to ����� even during small�scale moves� but these transitions do not a�ect the

annealing process on the smaller scale�they behave identically to the end�loops

on conned annealing� Therefore� unconned annealing can be shown equivalent

to conned annealing�

����� Inaccurate Fractal� Equivalent Quality

I have shown that constraining errors by �k � �Tk ln����� allows an inaccurate

fractal system to converge� However� I have produced an outcome inferior to the

accurate system� the inaccurate system reaches relative expected cost %quncon � ���

while the accurate system reaches quncon � �� �Sor����

A more useful result determines the number of additional annealing steps

needed to bring the inaccurate system to the same quality as the accurate sys�

tem� I provide specics below�

Theorem �� If t is the total time required to reach quncon � �� with accurate

���



annealing
 and t� is the total time to reach %quncon � �� under the inaccurate cost�

function
 then t and t� are related by the approximation

t�

t

�
�

�

����

�	��

�

Proof� Let �� � ����� To obtain %quncon � �� under inaccurate annealing� anneal

for

t� � dln ��� ln re � )t �	��
��

steps�

t� � dln ��
�
� ln re � �

�
ln
�b�

��
!

�

 F� ln �b�

��

�
e� ln��b

������� �	��
��

� dln ��
�
� ln re � � ln �b

�

��

�
� !

�

 F

� �
�b����

����
� �	��
��

Now� using algebra�

t�

t
�

dln ��
�
� ln re � � ln �b�

��

�
� ! �

�F

�
��b�����

���

dln �� ln re � � ln b�

�

�
� ! �

�F

�
�b�������

�	�����


�
ln �! ln �

�

ln �

�
ln b�

�
! ln �

�

ln b�

�

�
�

�

����

� �	�����

Suppose ���� b��� and � � ln �� ���� which is likely for a high�quality outcome

�otherwise� why use simulated annealing�� Then you can further approximate

�	����� as

t�

t

�
�

�

����

� �	�����

Note that �	����� has ��� �� � �T ln����� as a premise� Tightening error bounds

would bring t��t closer to one� Likewise� loosening error bounds would increase the

ratio�

���



��
 Measuring Errors

I have shown how errors and the temperature schedule interact to a�ect the

outcome and speed of simulated annealing� It is rarely practical to analytically

determine the error�range� instead you measure errors and estimate the error�range�

Annealing programs may measure errors in one of two ways� First� by subtract�

ing the true�cost from the computed�cost at each iteration� Second� by performing

a series of iterations� accumulating a total observed cost�di�erence� and subtracting

the total true cost�di�erence�

The rst� called �instantaneous error�� provides more detailed information

about each error� The second� called �accumulated error�� is more e�cient� since

the program computes the true�cost once per sequence� rather than once per

iteration� Several researchers have performed accumulated error measurements

�GD��� BJS��� DKN��� JD��� KCP�	�� I know of no published instantaneous

error measurements�

Figure 	��� shows a four iteration annealing sequence performed by two pro�

cessors� The rst column shows the true�state of the system� The second column

shows processor ��s moves� with local copies of processor � variables shaded� The

third column shows processor ��s moves� with local copies of processor � variables

shaded� The fourth column shows each instantaneous error� in graphical form�

The fth column shows accumulated errors�

The accumulated error column in Figure 	��� does not account for the �P�

���
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Figure 	���� Observed Errors

rejects D move�� In fact� accumulated errors never include contributions from re�

jected moves� Although there are two instantaneous errors in the gure�s accepted

moves� the nal accumulated error is zero�the instantaneous errors cancelled each

other out�

To measure instantaneous errors you must compute both true and observed�

costs of each move� annihilating the speed advantage of inaccurate cost�functions�

You might compute instantaneous errors during a test run� to predict the behavior

of a class of annealing problems� but not during every production run�

Measuring accumulated errors is more e�cient� but it does not help estimate the

instantaneous error�range� Dividing a series� accumulated error by its iterations

does not produce average instantaneous error�the accumulated error does not

include contributions from rejected moves� The average instantaneous error isn�t

useful anyway� the theory requires a maximum and minimum for the range�

���



Though accumulated error measurements do not help estimate instantaneous

errors� accumulated error�bounds work directly in the results I established� Why#

The composed moves in a sequence can be seen as a �big move�� and the composed

accept�reject decisions as a �big decision�� If you performed the �big� annealing

algorithm the result would be the same Boltzmann distribution as that of the

�little� original� The following results formalize this idea�

Lemma �� Let X � �S�G�C� T � be an annealing chain
 with state�set S
 generate

probability matrix G
 cost�function C
 and �xed temperature T 
 which satis�es

������������ Choose a sequence�length n
 and assume G� �
Qn
i��G has the coverage

property ������ Construct another annealing chain X � � �S�G�� C� T �� Then
 X

and X � have the same equilibrium probability density�

Proof� I rst prove that X � satises the annealing properties �	�����	����

Probability �	���� G is a transition probability matrix� The composition of tran�

sition probability matrices is a transition probability matrix� so G� is a transition

probability matrix�

Coverage �	�	�� By denition of G��

Aperiodicity �	���� If �s� s� � S�C�s� 	� C�s��� then �	��� ensures aperiodicity�

Otherwise� all costs are equal� and the acceptance matrix dened by �	��� must

contain all �s� By �	���� the Markov chains P � � G� and P � G� Therefore� G

must itself be aperiodic� The composition of aperiodic matrices is aperiodic� so G�

is aperiodic� Therefore� P � is aperiodic�

��	



Finiteness �	�
�� By denition of X ��

Symmetry �	���� The composition of symmetric matrices is symmetric� there�

fore G� is symmetric�

The annealing constraints are satised� Therefore� the equilibrium probability

density of chain X � is the Boltzmann distribution �	����

Since X and X � have the same cost�function� their distributions are equal�

Let the move�sequence )s � hs�� � � � � sni designate n successively accepted moves�

Let the observed cost�di�erence from state s to s� be denoted %��s� s�� The total

observed cost�di�erence is

% �
n��X
i��

%��si� si��� �	�����

Knowing the true�cost at the beginning and end of the move�sequence� C�s�� and

C�sn�� you can compute the total true cost�di�erence as

 � C�sn�� C�s��� �	���	�

The accumulated error for the sequence is

��s � % � �
n��X
i��

�i� �	�����

Theorem �� The results of x����� apply to accumulated errors� If the accumulated

error is bounded above by � and below by �
 and � � �� �
 then

e���T�s�T � � %�s�T � � e��T�s�T � �	���
�

���



and

e���T 'C���T �� � 'C� %��T �� � e��T 'C���T �� �	�����

Proof� All moves which can generate instantaneous errors have a non�zero prob�

ability of being accepted� Therefore� any sequence of moves ��s has a non�zero

probability
Qn��
i�� Psi�si��

of being accepted in its entirety� Its accumulated error�

��s� contains instantaneous error contributions from each move�

Lemma �	 shows that the equilibrium properties of annealing with �big moves��

created by composing generate n times� are equal to those obtained by annealing

with �little moves�� using generate once�

Suppose the instantaneous error of the �big move� cost�function was bounded

above by � and below by �� Of course� you could then use the results of x	���� to

predict the equilibrium properties of the �big move� system�

Note that the instantaneous error of the �big move� cost�function is the accu�

mulated error of the �little moves�� Then �	���� implies �	���
�� and �	���� implies

�	������

The instantaneous and accumulated error upper bounds� � and �� are infre�

quently observed at low temperatures� when errors are above the mean� they

decrease the probability of acceptance� Some annealing algorithms have errors

symmetric about the mean� and there the mean error is zero� Parallel implemen�

tations often have these properties �DW���� In this case� use the observed lower

��




bound to estimate the upper bound�

��� Summary

Calculation errors in simulated annealing� arising from parallelism or estimated

cost�functions� a�ect the expected cost� the algorithm�s speed� and its outcome�

Revisiting the taxonomy constructed in x�� the properties of � and ( produce the

same taxonomy� as shown in Table 	���

Category %C %G %� %(
Serial�Like � C � G � � � (
Altered Generation � C 	� G � � 	� (
Asynchronous 	� C # 	� � 	� (
Serial� Estimated Cost 	� C � G 	� � 	� (

Table 	��� Comparison with Accurate�Cost Serial Annealing �Revisited�

I have addressed several open questions about annealing under inaccurate cost�

functions�

When the cost�function has range�errors� the expected true�cost at equilibrium

is bounded� The controlling value is � � � � �� In this case� the expected true�

cost� %C� ranges from Ce���T to Ce���T � where C is the expected true�cost when

running annealing with an accurate cost�function� Therefore� the expected true�

cost diverges exponentially from that obtained with an accurate cost�function� as

temperature decreases� By controlling the errors so that � is proportional to T �

the expected costs will di�er no more than a constant factor�

When the errors exhibit a Gaussian distribution� the controlling value is ����
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In this case� the expected true�cost &C� ranges from Ce���
�������T �

to Ce����������T �
�

Again� the expected true�cost diverges exponentially as temperature decreases�

Likewise� if � � � is kept proportional to T � the equilibrium costs will di�er by

no more than a constant factor�

To characterize a system with varying temperature� examine the rate at which

it approaches equilibrium at each temperature� One convenient measure for the

rate of convergence is �conductance��

Like the expected true�cost� the conductance of the inaccurate system diverges

exponentially from that of the accurate system� as temperature decreases� The

conductance of an inaccurate system with xed bounds varies from e����T( to

e����T(� where ( is the conductance of an equivalent accurate system�

The conductance of a system with Gaussian errors� &(� is related to the ac�

curate system conductance by e��
������T �

(�� � &( � e���
������T �

(� Again� the

conductance diverges exponentially as temperature decreases�

By relating the expected cost and conductance of the inaccurate systems to

those of similar accurate systems� I obtained useful results� error constraints and

annealing�time adjustments which guarantee convergence to the same quality out�

come as normal annealing�

The state spaces I considered are mathematical approximations to meaningful

problems� They provide direction to be modied with experience� Based on this

analytic work� simulated annealers should�

� Identify errors or approximations in the cost�function� For example� a com�
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mon cost�function approximates the length of a wire network as half the bounding�

box perimeter� This inaccurate cost�function appears in many VLSI circuit place�

ment programs�

� Instrument inaccurate annealing programs to compute and display errors

during a run� Note that it is acceptable to measure only accumulated errors�

since x	�� shows that they are equivalent to instantaneous errors� However� the

accumulated errors will likely be larger than the instantaneous errors� and several

instantaneous moves must be counted as one accumulated move� Both e�ects will

extend the required annealing time�

� Introduce algorithms to keep errors within a constant factor of the tempera�

ture� Use x	�� and x	�
 to help estimate the factor�

� Increase the number of annealing steps performed at each temperature to

compensate for errors� Use x	�
�� to help estimate the number of steps�

� Weigh the performance benets of parallelism or approximate computations

against the increased annealing steps to obtain the same quality� Inaccuracies can

even degrade the total execution time� when considered in this light�
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CHAPTER �

Conclusion

Simulated annealing is an optimization algorithm related to a thermodynamic

process called annealing� It is similar to the greedy algorithm� but generates cost�

increasing moves to escape local minima based on temperature� If a cost�function

and a move�generator exist� and appropriate constraints are satised� many com�

binatorial problems are susceptable to simulated annealing� One such problem is

circuit placement�

Because the circuit placement problem has many variations� each suitable for

di�erent chip technologies or resource constraints� it has resisted special�purpose

optimization algorithms� So� the general�purpose simulated annealing algorithm

has remained a popular method for placing circuits�

Because annealing is thought to be slow� researchers have explored a vari�

ety of parallelizing techniques� Some techniques exploit annealing�s claimed error

tolerance to eliminate some inter�processor communication required to compute

accurate cost�functions� This speeds up the cost�function� but introduces errors�

Results have been mixed� but promising�

I wrote parallel circuit�placement annealing programs which measure cost�

function errors and �circuit mobility�� I then experimented on several small circuit
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placement problems� When errors increased� the outcome quality decreased� Cir�

cuit mobility per�move did not conclusively a�ect the outcome� while increased

mobility per�trial at low temperatures seemed to improve the result�

Dissatised with existing claims about simulated annealing�s error tolerance� I

proved the analytic results of Chapter 	� Errors have long been known to appear in

some parallel simulated annealing applications� and many experiments have been

performed to understand their impact� However� I showed that errors also appear

in common sequential annealing applications� These errors succumb to the same

analysis�

I assumed that two forms of error appear in cost�functions� range�errors and

Gaussian errors� Two important properties�equilibrium cost and conductance�

drive the proofs� It turns out that conductance formally captures my intentions

behind measuring �mobility� in the experiments of Chapter �� I showed how

equilibrium cost and conductance change with error constraints and temperature�

when the temperature is xed�

To understand how errors a�ect the nal outcome� you must consider a non�

constant temperature schedule� I rst evaluated general combinatorial problems

under an impractical schedule common in annealing proofs� T �t� � c� ln t� This

schedule completes in exponential time� but it applies broadly� I proved that

keeping range�errors to a constant factor of temperature produces a high�quality

outcome�

A commonly used temperature schedule is the geometric schedule� T �t� �
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c T �t� ��� where � � c � �� In theory� this schedule is not broadly applicable� in

practice� variations of it are used everywhere� Sorkin showed that self�a�ne func�

tions �fractals� can be solved by annealing with geometric schedules� He performed

measurements on typical annealing problems showing they compare favorably to

fractals�

I showed that fractals containing range�errors can also be solved by geomet�

ric temperature schedules� if the range is conned to a constant function of the

temperature� It is necessary to extend the temperature schedule to account for

slower convergence to equilibrium �i�e�� changes in conductance� and to account

for the equilibrium cost di�erences between the inaccurate cost�function and the

true�cost�

These results have practical bearing for simulated annealing researchers� Errors

may occur in cost�functions even when no parallelism is involved� When errors oc�

cur� analyze the problem or measure errors at runtime to establish an error range�

Using this range� and the results of the last chapter� modify the algorithm to

keep errors within a constant factor of the temperature� Extend the temperature

schedule to account for conductance changes and equilibrium cost di�erences� Us�

ing these techniques� researchers can improve the outcome and speed of simulated

annealing whenever errors occur�
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��� Future Research

This work leaves open several areas of research� First� better controlled exper�

iments would bring more understanding to this eld� Few published reports make

fair comparisons between parallel and sequential annealing outcomes� When the

outcome quality of parallel annealing is worse than sequential� speedup claims for

parallel annealing aren�t valid�

Second� dismal speedup results have continued to appear in publications on

parallel simulated annealing� The problem sizes for experiments have been small�

and experimenters have not compensated for increased errors and decreased con�

ductance� These contribute to decreasing the outcome quality or increasing the

time�

For example� parallel versions of row�based circuit placement have often in�

terleaved the rows on di�erent processors �KCP�	� Kli���� This is not surprising�

because the data�structures lend themselves to assignment of a whole row to a

processor� but it creates massive errors and small conductance� each contributing

to a poor outcome� Attentiveness to these issues will make future experiments

much more successful�

Third� measurements of various properties during annealing would help drive

adaptive move and error�control schedules for simulated annealing� These should

include errors and conductance� In fact� just nding a practical way of estimating

conductance for various annealing problems would contribute to the eld�

���



Fourth� adaptive error�control schedules would make both parallel and sequen�

tial annealing run better� An early attempt at an error�control schedule appears

in �CRS���� but I have seen little since� Some parallel algorithms could be easily

improved by using simple serializable set at low temperatures �see x������� I believe

this area has many opportunities�

Fifth� during my work on Chapter 	� I sought to prove a very general statement

about errors� that if an annealing space was ergodic� and if any particular temper�

ature schedule was guaranteed to obtain an outcome of a particular quality on that

space� then keeping the errors within a constant factor of temperature� using the

same temperature schedule� would guarantee an outcome of some related quality�

This proof eluded me� but I believe it likely�

Many simulated annealing cost�functions include errors� both in sequential and

parallel implementations� but annealing remains a generally useful tool� Under�

standing the consequences of cost�function errors� both in outcome quality and

execution time� helps us produce faster and better annealing algorithms�
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